Calculation of solubility of three anthraquinone dyes in supercritical carbon dioxide: equations of state and density functional theory approaches

Mahtab Nabavi, Mohammad Reza Bozorgmehr, Mahmood Ebrahimi

Abstract


Solubility of three Anthraquinone dyes in supercritical fluid has been calculated. For this purpose, the Peng- Robinson equations of state, the Modified Peng-Robinson equation of state by Gasem et al. and Dashtizadeh et al. equation of state have been applied. Error values of each equation of state in different conditions of temperature, mixing rule and estimating methods have been reported. The quantum mechanics density functional theory method along with 6-31G basis set was used and interaction energy between each of structures and supercritical carbon dioxide were calculated. Obtained interpretations from quantum calculations are consistent with the results from equations of state.

 

Keyword: Anthraquinone dye, density functional theory, solubility, group contribution method


Full Text:

PDF

References


Forgacs, E., T. Cserháti, and G. Oros, Environment International, 2004; 30(7): 953-971.

Oros, G., T. Cserháti, and E. Forgács, Chemosphere, 2003; 52(1): 185-193.

Knittel, D. and E. Schollmeyer, European Water Pollution Control, 1996; 6(6): 6-9.

Söğüt, O.Ö. and M. Akgün, The Journal of Supercritical Fluids, 2007; 43(1): 106-111.

Ramsey, E., et al., Journal of Environmental Sciences, 2009; 21(6): 720-726.

Long, J.-J., Y.-Q. Ma, and J.-P. Zhao, The Journal of Supercritical Fluids, 2011; 57(1): 80-86.

Hou, A., et al., Journal of Cleaner Production, 2010; 18(10–11): 1009-1014.

Kiran, E., The Journal of Supercritical Fluids, 2010; 54(3): 308-319.

Gopalan, A.S., C.M. Wai, and H.K. Jacobs, Supercritical carbon dioxide. 2003: American Chemical Society.

Blanchard, L.A. and J.F. Brennecke, Industrial & engineering chemistry research, 2001; 40(1): 287-292.

Diaz, M.S. and E.A. Brignole, The Journal of Supercritical Fluids, 2009; 47(3): 611-618.

Housaindokht, M.R. and M.R. Bozorgmehr, The Journal of Supercritical Fluids, 2008; 43(3): 390-397.

Bozorgmehr, M.R. and M.R. Housaindokht, Chinese Chemical Letters, 2009; 20(4): 501-505.

Housaindokht, M.R., B. Haghighi, and M.R. Bozorgmehr, Korean Journal of Chemical Engineering, 2007; 24(1): 102-105.

Bozorgmehr, M.R. and M.R. Housaindokht, Chemical engineering & technology, 2006; 29(12): 1481-1486.

Sengers, J.V., Equations of state for fluids and fluid mixtures. Vol. 5. 2000: Elsevier Science.

Poling, B.E., J.M. Prausnitz, and O.C. John Paul, The properties of gases and liquids. Vol. 5. 2001: McGraw-Hill New York.

Valderrama, J.O. and V.c.H. Alvarez, The Journal of Supercritical Fluids, 2004; 32(1–3): 37-46.

Valderrama, J.O. and V.H. Alvarez, Fluid Phase Equilibria, 2004; 226(0): 149-159.

Escobedo-Alvarado, G.N., S.I. Sandler, and A.M. Scurto, The Journal of Supercritical Fluids, 2001; 21(2): 123-134.

Colussi, S., N. Elvassore, and I. Kikic, The Journal of Supercritical Fluids, 2006; 39(1): 118-126.

Shamsipur, M., et al., The Journal of Supercritical Fluids, 2004; 32(1–3): 47-53.

Fasihi, J., et al., Dyes and pigments, 2004; 63(2): 161-168.

Fat’hi, M.R., et al., Talanta, 1999; 48(4): 951-957.

Gasem, K.A.M., et al., Fluid Phase Equilibria, 2001; 181(1–2): 113-125.

Dashtizadeh, A., et al., Fluid Phase Equilibria, 2006; 242(1): 19-28.

Lee, B.I. and M.G. Kesler, AIChE Journal, 2004; 21(3): 510-527.

Pfohl, O., S. Petkov, and G. Brunner, Industrial & Engineering Chemistry Research, 2000; 39(11): 4439-4440.

Méndez-Santiago, J. and A.S. Teja, Fluid Phase Equilibria, 1999; 158–160(0): 501-510.

Becke, A.D., The Journal of Chemical Physics, 1993; 98: 5648.




URN: http://nbn-resolving.de/urn:nbn:de:0000easl.v3i4.1221

Refbacks

  • There are currently no refbacks.




Copyright (c) 2017 Entomology and Applied Science Letters



<Entomology+Zoology+Allied Branches>Entomology and Applied Science Letters