Entomology and Applied Science Letters Volume 8, Issue 2, Page No: 91-99

Copyright CC BY 4.0

Available Online at: www.easletters.com

Visual Display Terminals Health Impact During COVID 19 Pandemic on the Population in Jeddah, Saudi Arabia

Fathi El-Gamal^{1*}, Fedaa Najm², Nedaa Najm², Jumanah Aljeddawi²

¹Department of Family Medicine, Ibn Sina National College for Medical Studies, Jeddah, KSA.

²Ibn Sina National College for Medical Studies, Jeddah, KSA.

ABSTRACT

Working with visual display terminals (VDT) is growing significantly in the global information age, with the vast growth of digital devices, which is also followed by a higher incidence of health issues. To explore the physical and mental health impacts of long term use of visual display terminals on the population in Jeddah, Saudi Arabia. It was a cross sectional study; the method of non-probability convenient sampling was used to collect data on 503 subjects, in Jeddah city through online-Google forms. Data collection was done through the use of a predesigned questionnaire that provided information on individual, sociodemographic, and clinical features of the subjects as well as information on the aspects of use of VDT. Statistical analysis: data analysis was performed in SPSS version 23. The sample size was 503 subjects with mean age of 31.95 \pm 12.51 years, 98% of them used VDTs. They used it almost every day (mean= 6.6 ± 1 days), for about 8 hours per day (mean= 8.2 ± 4.1 hours). Students and office employees used the VDT > 7 hours/day. Almost, all the subjects (99%) used smart phones. Headache, neck pain and shoulder pain, lower back pain, dryness of the eye and interrupted sleep were common complaints among VDT users. It also, interfered with their daily life activities. In principal component factor analysis, duration of use of VDT in hours/day (weight = 0.710), and days/week (weight = 0.724) were significantly loaded on one factor; however, no other variables had weight greater than 0.3 on this factor.

Keywords: VDT, Jeddah, Health effects, COVID-19 pandemic.

HOW TO CITE THIS ARTICLE: El-Gamal F, Najm F, Najm N, Aljeddawi J. Visual Display Terminals Health Impact During COVID 19 Pandemic on the Population in Jeddah, Saudi Arabia. Entomol Appl Sci Lett. 2021;8(2):91-9. https://doi.org/10.51847/jJp0wj6l4S

Corresponding author: Fathi El-Gamal E-mail ⊠ drfathimhelgamal1996@hotmail.com

Received: 02/04/2021 **Accepted:** 24/06/2021

INTRODUCTION

During COVID-19 pandemic, the use of video display terminals (VDT) obviously increased. It had its significant impact on general health as many researches show [1-4]. Females tended more to use smart phones, while males more frequently used laptops, desktops, as well as, handheld, (non-) active game consoles the use of smartphones dominated the rest [1, 5].

The neck/shoulder region initially reported Musculoskeletal symptoms later on also the upper and lower back, arms, wrist and hand [2]. The majority daily VDT use time of most of the partakers 6–11 hours [3, 4, 6, 7]. There is an increase in incidences of dry eye because of the extreme expansion in internet networks and its

mediated communications. 36% of respondents internet-based selfscreening questionnaire reported dry eye symptoms [8]. In the Commonwealth of Massachusetts, the effects of headaches and musculoskeletal discomfort were higher among VDT workers in public utilities, computer and data processing services than in banking, communications, and hospitals. Less frequent symptoms were double vision and coloured halos around objects, with prevalence below [9]. There is a range of 12.1% to 71.5% in the year-long prevalence of neck pain in grownups. The increased Frequency of neck disorder, upper and lower back extremity has been linked to the heightened us of VDT [10-12]. Lower back pain being the chief hinderance in VDT workers. The significant increase in proportion of

© 2021 Entomology and Applied Science Letters

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-Non Commercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

partakers testifying about physical discomfort from backache to ocular soreness can be attributed to the higher number of VDT work hours [13-15]. An age and gender adjustment in the multivariate models showed a prevalence of wrist/hand symptoms with prolonged screen time [16]. A primarily localization of the dermatological conditions show that repetitive friction and trauma causes the majority of palm and finger problems as well as allergic contact sensitivities [17]. The worsening of depressive and anxiety states form the main mental health effects. Collectively referring to the symptoms as VDT syndrome. A sharp increase in the syndrome is attributed to longer VDT work hours i.e., exceeding five hours [18]. Prolonged use of VDT was associated, also, with insomnia, irritability, weariness, sleep disturbances and psychophysical troubles [19, 20].

A study in Japan confirmed that an excess of 5hours in VDT attributed to a degradation in mental health in its administrative staff [21]. Additionally, poor self-rated health was linked to a 3 hour plus use of VDT according to a national study of Saudi adults [22]. An exploration of the magnitude and frequency of VDT use during the COVID-19 pandemic, and occurrence of self-reported health complaints among the population of Jeddah, Saudi Arabia was the main aim of the study.

MATERIALS AND METHODS

The method of non-probability convenient sampling was used to collect data for the cross sectional study, on the population through web based online-Google forms. The minimal sample size required for the present study was calculated to be 220 subjects, using G*Power software, according to alpha = 0.05, and Power= 95%, and 5 degrees of freedom [23]. The total number of subjects enrolled in the present study was 503 respondents. collection of data was done by a predesigned questionnaire which provided information on individual, sociodemographic, and clinical features of the subjects; in addition to information on the duration and frequency of use of VDT, as well as the purpose and way of using it. Approval of the design of the study was granted by the Institutional Review Board of the Ibnsina National College for medical studies (No. H-11-09062021).

Statistical analysis: SPSS version 22 was used. Chi square test of significance and principal component factor analysis were used and weights for loading on the variables were calculated. Loadings equal or greater than 0.5 were considered significantly associated with the extracted factor. All variables that significantly loaded on a factor are significantly associated with each other. Level of significance for the present study was 0.05.

RESULTS AND DISCUSSION

The total number for the present study was 503; with a mean of 31.95 years (SD: 12.51). Quite a number of subjects (97.6%) used video display terminals (VDT). The mean use per days of the week was 6.6 days (SD: 1), and the mean hour use of VDT per day was 8.2 (SD: 4.1).

Table 1 shows the distribution of the studied subjects by duration of use of VDT and personal characteristics and self-reported morbidity conditions. Majority of the subjects who used VDT were females (82.3%), and bachelor holders (69.2%); however, they were no significantly related to number per hour use per day (p>0.05). Students and those who have office jobs used the VDT more than 7 hours per day (38.4%, and 30.3% respectively) more than less than 7 hours per day (24.3%, and 25.2%), this difference was statistically significant (p < 0.000). Smoking was irrelevant to use of VDT (p <0.502). Diabetes mellitus was significantly more encountered among those who used VDT less than 7 hours per day compared to those who used VDT over 7 hours per day (11.2%, and 5.7% respectively), where p < 0.027. Joint diseases showed similar trend (p < 0.002). Hypertension, heart disease, visual disturbance and allergies were irrelevant to duration of use of VDT per day (p > 0.05). Table 2 displays the distribution of studied subjects by duration of use of VDT per day and characteristics of use of VDT device. Majority of the subjects used smart phones (98.6%), laptops (69.1%), and tablet devices (50.5%).1%); lease percentage used desktop computers (32.1%). The duration of use per day was irrelevant to the VDT device used (p > 0.05). The purpose of use of the device was for study, entertainment and/or work; it was irrelevant to the duration of use per day (p < 0.136). Majority of the subjects used the VDT 7 days per week (83.7%); however in was

higher among those who used VDT over 7 hours per day (89.2%) compared to those who used the VDT less than 7 hours per day (75.7%), where p <0.002. Majority of the subjects spend time using VDT while sitting on couches (45.8%); those who use VDT over 7 hours per day tended to use desks and bed while using the devices (20.9%, and 38.7% respectively), more commonly compared to those who used DVT devices for less than 7 hours per day (15.6%, and 30.7% respectively), this difference were statistically significant (p <0.013). **Table 3** reveals hours of use of VDT per day and self-reported complaints. Headache (76.5%) was the most prevalent complaint among VDT users, followed by neck pain and shoulder pain and lower back pain (59.2%, 55.9%, and 45.7% respectively). Dryness of the eye was next in frequency (52.9%). Double vision and numbness of the fingers were reported by over one third of the VDT users (32.8%, and 37.3% respectively). All these complaints were irrelevant of duration of use of VDTs per day (p > 0.05). Table 4 depicts the association between hours of use of VDTs per day and life style changes. Mood swings (60.0%), and interrupted sleep (56.5%) were main complaints reported by the VDT users, however they were irrelevant to duration of exposure to VDT per day (p > 0.05). Large proportion of the VDT users (44.5%) reported that using VDTs interfered with their daily life activities; and had difficulty falling asleep (44.1%); these complaints were irrelevant to the duration of use VDT per day (p > 0.05). A sizable proportion of the subjects (43.1%) reported that they got depressed, if the VDT hadn't been available; this was significantly more common among those who use the VDT > 7 hours per day (48.5%) compared to those who use VDT < 7 hours per day (35.4%), where p < 0.004. **Table 5** shows the principal component factor analysis for the VDT use characteristics and other personal and clinical variables. The variables use of DVT in hours per day (weight= 0.710), and use of VDT in days per week (weight=0.724) were significantly associated with factor 8; no other

variable had weight greater than 0.5 on this factor.

It has long been established that poor self-rated health and severe psychological distress was linked to a 10 hour plus use of VDT for work [21, 22, 24]. Additionally, a 4-9 h usage of VDT especially during the Covid-19 pandemic, was linked to extreme psychological distress among young staff. However as for non-work activities, VDT did not have the extreme effects in both physical and mental health [25]. This study was done to explore the link between self-reported psychological and health distress and VDT usage among the general population, in Saudi Arabia during the COVID-19 pandemic. Smartphone use dominated with a higher usage in girls than boys, whilst in boys there was a much higher use of laptops, desktops, in addition to, handheld, (non) active game consoles. Laptop use increase with increasing school level [1]. Similar findings were found in the present study. Smartphone use dominated multiple activities: homework, videos, games and general use among the devices [26]. Social activity, like messaging and social media, was used the most in the smartphone, whilst tablet use was mainly watching videos, desktop and laptop [6]. In the present study, the purpose of use of the VDT was for study, entertainment and/or work; it was irrelevant to the duration of use per day (p < 0.136). Headache (76.5%) was the most prevalent complaint among VDT users, followed by neck pain and shoulder pain and lower back pain (59.2%, 55.9%, and 45.7% respectively). This is similar to previous studies [4, 18, 20] which stated that an increased prevalence of neck disorders, upper and lower back of the body was attributed to a higher use of Visual Display Terminal (VDT). There is an increase in incidences of dry eye because of the extreme expansion in internet networks and its mediated communications. 36% of respondents to a web-based selfscreening questionnaire reported dry eye symptoms [8]. This is in line with the present study which found that over 50% of the VDT users suffered from dry eye disease.

Table 1. Distribution of studied subjects by duration of use of VDT and personal characteristics and morbidity history.

		1	Time of use o	f VDT per	Т	2		
Variable	Categories	< 7 hours		≥7 hours		N	%	— X ² (p- value)
		N	%	N	%	- IN	70	(p varue)
Gender	Female	176	85.9%	237	97,8%	413	82,3%	3.049

	Male	29	14,1%	60	20,2%	89	17,7%	(0.081	
Education	bachelor or higher	141	68.4%	207	69.7%	348	69.2%	0.089	
	less than bachelor	65	31.6%	90	30.3%	155	30.8%	(0.765	
	No job	86	41.7%	75	25.3%	161	32.0%		
Job	Student	50	24.3%	114	38.4%	164	32.6%	20.091	
300	Hand worker	18	8.7%	18	6.1%	36	7.2%	(0.000	
	Office job	52	25.2%	90	30.3%	142	28.2%	•	
Smoking	Non smoker	182	88.3%	256	86.2%	438	87.1%	0.502	
Smoking	Smoker	24	11.7%	41	13.8%	65	12.9%	(0.479	
Diabetes	No	183	88.8%	280	94.3%	463	92.0%	4.920	
	Yes	23	11.2%	17	5.7%	40	8.0%	(0.02	
hypertension	No	188	91.3%	274	92.3%	462	91.8%	0.160	
	Yes	18	8.7%	23	7.7%	41	8.2%	(0.689	
Heart disease	No	202	98.1%	290	97.6%	492	97.8%	0.098	
Heart disease	Yes	4	1.9%	7	2.4%	11	2.2%	(0.754	
Joint disease	No	178	86.4%	280	94.3%	458	91.1%	9.224	
Joint disease	Yes	28	13.6%	17	5.7%	45	8.9%	(0.002	
Visual impairment	No	122	59.8%	170	58.0%	292	58.8%	0.158	
visuai impairment	Yes	82	40.2%	123	42.0%	205	41.2%	(0.691	
	No	115	55.8%	173	58.6%	288	57.5%		
	Chest	20	9.7%	21	7.1%	41	8.2%		
Allergies	Rhinitis	35	17.0%	21	7.1%	100	20.0%	5.031 (0.282	
	Eye	8	3.9%	8	2.7%	16	3.2%	(0.202	
	Skin	28	13.6%	28	9.5%	56	11.2%		

Table 2. Distribution of studied subjects by duration of use of VDT and characteristics of use of VDT device.

			Time of use o	f VDT per	T				
Variable	Categories	< 7 hours		≥7 hours		NT.	0/	- X ² (p- value)	
	-	N	%	N	%	– N	%	(p varue)	
. 1	No	1	0.5%	6	2.0%	7	1.4%	2.088	
use a smart phone -	Yes	205	99.5%	291	98.0%	496	98.6%	(0.148)	
4-1-1-4	No	103	50.0%	146	49.2%	249	249.5%	0.034	
use a tablet device -	Yes	103	50.0%	151	50.8%	254	50.5%	(0.854)	
Use a laptop -	No	66	32.0%	89	30.1%	155	30.9%	0.221 (0.638)	
	Yes	140	68.0%	207	69.9%	347	69.1%		
Use a desktop	No	145	70.4%	196	66.2%	341	67.9%	0.971	
computer	Yes	61	29.6%	100	33.8%	161	32.1%	(0.325)	
	S	11	5.3%	9	3.0%	20	4.0%		
_	W	39	18.9%	41	13.8%	80	15.9%	_	
_	Е	41	19.9%	48	16.2%	89	17.7%	_	
Purpose of use*	S,W	7	3.4%	14	4.7%	21	4.2%	9.744 (0.136)	
- - -	W,E	22	10.7%	40	13.5%	62	12.3%	_ (** * * *)	
	S,E	51	24.8%	70	23.6%	121	24.1%	_	
	S,W,E	35	17.0%	75	25.3%	110	21.9%	_	
	1	3	1.5%	1	0.3%	4	0.8%	20.762	

	2	2 1.0%	2 0.7%	4 0.8%	(0.002)
_	3	5 2.4%	2 0.7%	7 1.4%	
Number of days per week using devices	4	1 0.5%	1 0.3%	2 0.4%	
	5	31 15.0%	15 5.1%	46 9.1%	
_	6	8 3.9%	11 3.7%	19 3.8%	
_	7	156 75.7%	265 89.2%	421 83.7%	
Way of spending time on VDT	On desk	32 15.6%	62 20.9%	94 18.7%	
	On couch	110 53.7%	120 40.4%	230 45.8%	8.630 (0.013)
	On bed	63 30.7%	115 38.7%	178 35.5%	/

^{*}S:study ; W:worke ; E:entertainment.

Table 3. Distribution of studied subjects by duration of use of VDT and occurrence of health problems.

		7	Time of use of	VDT per d	lay	y Total		
Variable	categories	< 7 hours		≥ 7	hours		0./	- X ² (p- value)
		N	%	N	%	– N	%	(p- value
E 1	No	97	47.1%	140	47.1%	237	47.1%	0.00
Eye dryness –	Yes	109	52.9%	157	52.9%	266	52.9%	(0.991)
Headache –	No	52	25.2%	66	22.2%	118	23.5%	0.618
neadache -	Yes	154	74.8%	231	77.8%	385	76.5%	(0.432)
Double vision —	No	139	67.5%	199	67.0%	338	67.2%	0.012
Double vision —	Yes	67	32.5%	98	33.0%	165	32.8%	(0.912)
NT1	No	84	40.8%	121	40.7%	205	40.8%	0.00
Neck pain —	Yes	122	59.2%	176	59.3%	298	59.2%	(0.994)
Ch1d	No	92	44.7%	130	43.8%	222	44.1%	0.039
Shoulder pain –	Yes	114	55.3%	167	56.2%	281	55.9%	(0.843)
Lower or upper back pain	Upper	49	23.8%	57	19.2%	106	21.1%	- 3.613 _ (0.164)
	Lower	84	40.8%	146	49.2%	230	45.7%	
	No	73	35.4%	94	31.6%	167	33.2%	_ (0.104)
337 ' '	No	149	72.3%	226	76.1%	375	74.6%	0.908
Wrist pain —	Yes	57	27.7%	71	23.9%	128	25.4%	(0.341)
Handa taint nain	No	142	68.9%	228	76.8%	370	73.6%	3.840 (0.050
Hands joint pain —	Yes	64	31.1%	69	23.2%	133	26.4%	
II	No	163	79.1%	244	82.2%	407	80.9%	0.722
Hands muscle weakness —	Yes	43	20.9%	53	17.8%	96	19.1%	(0.395)
Einacutine numbress	No	124	60.2%	190	64.0%	314	62.4%	2.073
Fingertips numbness —	Yes	81	39.3%	107	36.0%	188	37.4%	(0.355)
Handa ahiyanina	No	172	83.5%	239	80.5%	411	81.7%	0.744
Hands shivering —	Yes	34	16.5%	58	19.5%	92	18.3%	(0.388)
Dry hands —	No	163	79.1%	233	78.5%	396	78.7%	0.033
Dry nands —	Yes	43	20.9%	64	21.5%	107	21.3%	(0.856)
Itchiness hands —	No	165	80.1%	258	86.9%	423	84.1%	4.170
Termiess nanus —	Yes	41	19.9%	39	13.1%	80	15.9%	(0.041)
Recurrent skin	No	177	85.9%	262	88.2%	439	87.3%	0.576
inflammation	Yes	29	14.1%	35	11.8%	64	12.7%	(0.448)

96

Table 4. Distribution of studied subjects by duration of use of VDT and life style and psychological state.

		1	Time of use of	VDT per d	T			
Variable	categories	< 7 hours		≥7 hours		N T	0.1	X ² (p- value)
		N	%	N	%	- N	%	4
Interference with daily	No	115	55.8%	164	55.2%	279	55.5%	0.018
life activity	Yes	91	44.2%	133	44.8%	224	44.5%	(0.893)
Depressed if VDT is not available	No	133	64.6%	153	51.5%	286	56.9%	8.442
	Yes	73	35.4%	144	48.5%	217	43.1%	(0.004)
	No	87	42.2%	114	38.4%	201	40.0%	0.751
Mood swings –	Yes	119	57.8%	183	61.6%	302	60.0%	(0.386)
D'C' 1, C 11, 1	No	115	55.8%	166	55.9%	281	55.9%	0.00
Difficulty falling asleep —	Yes	91	44.2%	131	44.1%	222	44.1%	(0.988)
T 1.1	No	90	43.7%	129	43.4%	219	43.5%	0.003
Interrupted sleep -	Yes	116	56.3%	168	56.6%	284	56.5%	(0.955)

Table 5. Principal component factor analysis with Vari Max rotation of the use of VDT and personal, social, morbidity history

Rotated Component Matrix										
W. 111	Component									
Variables	1	2	3	4	5	6	7	8		
Sex	041	.087	817	.006	.043	.065	.043	070		
Age	.634	062	.285	160	139	.128	139	293		
Smoking	088	.094	.776	080	.155	006	003	.047		
Diabetes Mellitus	.477	113	.387	.054	298	.152	.224	062		
Hypertension	.373	.025	.323	.145	425	.296	.027	146		
Use of VDT hours/day	047	.039	.051	.113	.075	108	.196	.710		
Use of VDT days/weeks	.032	053	.047	.049	121	.095	225	.724		
Eye dryness	.302	.178	099	.142	.271	.196	.071	.059		
Headache	207	.501	234	.083	.149	.202	.118	.114		
Double vision	.170	.235	043	.107	.260	.135	.398	061		
Neck pain	.137	.721	.085	.137	.063	.196	.094	.004		
Shoulder pain	.240	.748	.011	.059	.067	.042	.037	058		
Lower/ upper back pain	115	688	001	025	055	.124	062	.010		
Wrist pain	.702	.228	107	.015	.115	.014	070	.039		
Hands joint pain	.699	.172	047	.045	.113	.048	.089	.048		
weakness in hand muscles	.585	.165	.010	138	.196	.200	.305	.104		
Numbness in fingertips	.424	043	002	.315	.068	059	.328	136		
Tremors	040	.179	.042	.112	130	.027	.756	.001		
Dry rough hands	.236	044	102	109	.291	.243	.515	.071		

Hand itchiness	.186	.042	.050	.113	.073	.748	.111	071
recurrent skin inflammations	.037	.094	078	035	.056	.799	.060	.041
VDT interferes with daily life activities	.077	.113	145	.573	.187	043	095	.031
Depressed/ anxious if VDT are not available	.026	.006	.049	.741	.048	.024	.069	.194
Mood swings	142	.170	.003	.656	.197	.148	.170	033
Difficulty falling asleep	.084	.092	.035	.275	.663	.047	.071	035
Interrupted sleep	.149	.148	.133	.230	.675	.127	.027	054

Double vision and numbness of the fingers were reported by over one third of the VDT users (32.8%, and 37.3% respectively). This is consistent with findings from previous study [10, 17]. The worsening of anxiety and depressive states have been reported as mental health effects. Prolonged VDT work is associated with insomnia, irritability, weariness, psycho-physical troubles [18-20]. In the present study mood swings (60.0%), and interrupted sleep (56.5%) were main complaints reported by the VDT users. Large proportion of the VDT users (44.5%) reported that using VDTs interfered with their daily life activities; and had difficulty falling asleep (44.1%). In the recent years there has been a rapid increase in smartphone use. This may result in the convergence of internet addiction and mobile phone problems into smartphone addiction [26]. In the present study a 43.1% reported that they got depressed, if the VDT hadn't been available; this was significantly more common among those who use the VDT > 7 hours per day. Principal component factor analysis revealed that all physical and psychological manifestations were irrelevant of the duration of usage of VDT regarding hours per day or days per week.

Limitations

Some limitations to this study are: firstly, there is a subjective measurement of the use of VDT that might not represent the existent use. However, a closed estimate of actual use was employed by asking the partakers the total hours of VDT usage per day. Secondly, due to the cross-sectional nature of the study, it is not possible to deduce if the effects of the use of VDT in the COVID-19 pandemic will have a persevere in the long run. In order to look into the long-term health effects of non-pharmacological measures during the COVID-19 pandemic, further studies are required.

CONCLUSION

Almost, all the subjects (99%) used smartphones. Headache, neck pain and shoulder pain and lower back pain, and dryness of the eye, mood swings and interrupted sleep were common complaints among VDT users. It also, interfered with their daily life activities. In principal component factor analysis use of DVT in hours per day (weight= 0.710), and days per week (weight=0.724) were significantly loaded on one factor; however, no other variables had weight greater than 0.5 on this factor. Prolonged use of VDT may lead to VDT addiction. A recommendation of more study on the links between health and purpose- specific VDT usage.

ACKNOWLEDGMENTS: We thank all the participants for their cooperation throughout the study.

CONFLICT OF INTEREST: None

FINANCIAL SUPPORT: None

ETHICS STATEMENT: The study was conducted according to the guidelines of the Declaration of Helsinki and approved by the Institutional Review Board of Ibnsina National College for medical studies (No. H-11-09062021, approval date: 9 – 6- 2021).

REFERENCES

 Ranasinghe P, Wathurapatha WS, Perera YS, Lamabadusuriya DA, Kulatunga S, Jayawardana N, et al. Computer vision syndrome among computer office workers in a developing country: an evaluation of prevalence and risk factors. BMC Res Notes.

- 2016;9(1):1-9. doi:10.1186/s13104-016-1962-1
- 2. Cheng X, Song M, Kong J, Fang X, Ji Y, Zhang M, et al. Influence of prolonged visual display terminal use and exercise on physical and mental conditions of internet staff in hangzhou, China. Int J Environ Res Public Health. 2019;16(10):1829.
- 3. Kim SW. VDT syndrome according to the types of computer use among elementary students. J Korean Public Health Nurs. 2005;19(2):359-70.
- 4. Zahra NA, Alanazi AA. Digital Childhood: the Impact of Using Digital Technology on Children's Health. Int J Pharm Res Allied Sci. 2019;8(3):144-54.
- 5. Sánchez-Brau M, Domenech-Amigot B, Brocal-Fernández F, Quesada-Rico JA, Seguí-Crespo M. Prevalence of computer vision syndrome and its relationship with ergonomic and individual factors in presbyopic VDT workers using progressive addition lenses. Int J Environ Res Public Health. 2020;17(3):1003. doi:10.3390/ijerph17031003
- 6. Kim D, Lee DK, Cho HK. A study on the VDT workstations usage for office workers. J Ergon Soc Korea. 2015;34(2):179-90. doi:10.5143/JESK.2015.34.2.179
- 7. Nakamura S. Approach to dry eye in video display terminal workers (basic science). Invest Ophthalmol Vis Sci. 2018;59(14):DES130-7. doi:10.1167/iovs.17-23762
- 8. Rossignol AM, Morse EP, Summers VM, Pagnotto LD. Video display terminal use and reported health symptoms among Massachusetts clerical workers. J Occup Med. 1987;29(2):112-8.
- Sánchez-Brau M, Domenech-Amigot B, Brocal-Fernández F, Quesada-Rico JA, Seguí-Crespo M. Prevalence of computer vision syndrome and its relationship with ergonomic and individual factors in presbyopic VDT workers using progressive addition lenses. Int J Environ Res Public Health. 2020;17(3):1003.
- Green BN. A literature review of neck pain associated with computer use: public health implications. J Can Chiropr Assoc. 2008;52(3):161.

- 11. Alazawi SA. Prevalence of musculoskeletal symptoms among visual display terminal users. Tikrit Med J. 2012;18(1):127-32.
- 12. Cheng X, Song M, Kong J, Fang X, Ji Y, Zhang M, et al. Influence of prolonged visual display terminal use and exercise on physical and mental conditions of internet staff in hangzhou, China. Int J Environ Res Public Health. 2019;16(10):1829.
- 13. Klussmann A, Gebhardt H, Liebers F, Rieger MA. Musculoskeletal symptoms of the upper extremities and the neck: a cross-sectional study on prevalence and symptom-predicting factors at visual display terminal (VDT) workstations. BMC Musculoskelet Disord. 2008;9(1):1-6. doi:10.1186/1471-2474-9-96
- 14. Overgaard E, Brandt LP, Ellemann K, Mikkelsen S, Andersen JH. Tingling/numbness in the hands of computer users: neurophysiological findings from the NUDATA study. Int Arch Occup Environ Health. 2004;77(7):521-5. doi:10.1007/s00420-004-0545-y
- 15. Feng B, Chen K, Zhu X, Ip WY, Andersen LL, Page P, et al. Prevalence and risk factors of self-reported wrist and hand symptoms and clinically confirmed carpal tunnel syndrome among office workers in China: a cross-sectional study. BMC Public Health. 2021;21(1):1-0. doi:10.1186/s12889-020-10137-1
- Kyriakou G, Glentis A. Skin in the game: Video-game-related cutaneous pathologies in adolescents. Int J Pediatr Adolesc Med. 2021;8(2):68-75. doi:10.1016/j.ijpam.2019.09.002
- 17. Nakazawa T, Okubo Y, Suwazono Y, Kobayashi E, Komine S, Kato N, et al. Association between duration of daily VDT use and subjective symptoms. Am J Ind Med. 2002;42(5):421-6.
- 18. Abbate C, Micali E, Abbate A, Barbaro M, Germanò D. Depression in video display terminal (VDT) employed workers. Neural Netw. 2020;21(1):14-8.
- 19. Thomée S, Härenstam A, Hagberg M. Computer use and stress, sleep disturbances, and symptoms of depression among young adults–a prospective cohort study. BMC Psychiatry. 2012;12(1):1-4. doi:10.1186/1471-244X-12-176

- 20. Sakurai K, Nishi A, Kondo K, Yanagida K, Kawakami N. Screening performance of K6/K10 and other screening instruments for mood and anxiety disorders in Japan. Psychiatry Clin Neurosci. 2011;65(5):434-41. doi:10.1111/j.1440-1819.2011.02236.x
- 21. Thorp AA, Owen N, Neuhaus M, Dunstan DW. Sedentary behaviors and subsequent health outcomes in adults: a systematic review of longitudinal studies, 1996–2011. Am J Prev Med. 2011;41(2):207-15.
- 22. Faul F, Erdfelder E, Lang AG, Buchner A. G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175-91. doi:10.3758/BF03193146
- 23. Biddle SJ, García Bengoechea E, Pedisic Z, Bennie J, Vergeer I, Wiesner G. Screen time, other sedentary behaviours, and obesity risk in adults: a review of reviews. Curr Obes Rep.

- 2017;6(2):134-47. doi:10.1007/s13679-017-0256-9.
- 24. Khin YP, Matsuyama Y, Tabuchi T, Fujiwara T. Association of Visual Display Terminal Usage with Self-Rated Health and Psychological Distress among Japanese Office Workers during the COVID-19 Pandemic. Int J Environ Res Public Health. 2021;18(17):9406. doi:10.3390/ijerph18179406
- 25. Eltayeb LB, Alharthi NS, Elmosaad YM, Waggiallah HA. Students' perception on E. Learning and Remote Exams during COVID 19 Outbreak 2020. Int J Pharm Phytopharmacol Res. 2020;10(5):142-8.
- 26. Hwang KH, Yoo YS, Cho OH. Smartphone overuse and upper extremity pain, anxiety, depression, and interpersonal relationships among college students. J Korea Contents Assoc. 2012;12(10):365-75. doi:10.5392/JKCA.2012.12.10.365