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ABSTRACT 

Pesticide resistance has become one of the pressing problems of ecology and agriculture because it makes 
it difficult to deal with pests and ectoparasites while increasing the chemical load on the environment. This 
paper focuses on the importance of studying insecticidal resistance in agricultural, veterinary, and medical 
insects. Brief information is given concerning the resistance of ectoparasites and crop insect pests in 
different world regions to commonly used insecticides. The main approaches for identifying insecticide 
resistance in field insect populations are listed. The progress achieved in understanding the molecular basis 
of insecticidal resistance in insects is briefly described, and the primary areas of recent research are 
outlined. The importance of assessing the resistance profile and the potential for insecticide resistance 
developing in field insect populations are emphasized. The study of molecular mechanisms of insecticidal 
resistance to specific compounds is important for searching for new active agents and developing strategies 
for their application.  
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INTRODUCTION 
 

Historically, the use of chemicals has been 

practiced as the primary method of insect pests 

and ectoparasites control [1, 2], and by far, the 

use of pesticides remains the most common way 

to control their population [3-5]. The use of 

pesticides in agriculture has increased over the 

past few decades with the continuous growth of 

global food production [6, 7]. Food and 

Agricultural Organization data show that in 2019 

the consumption of pesticides reached 4.2 

million tons, with insecticides being the third 

most used (17%) after herbicides (53%), 

fungicides, and bactericides (23%) [7]. According 

to BusinesStat estimates, pesticide production in 

Russia has increased by 1.7 times between 2017 

and 2021: from 86.8 thousand tons to 148.9 

thousand tons, while the share of insecticides by 

2021 amounted to 12.5% [8].  

The use of insecticides in agriculture is essential 

to enhance crop yields [2, 7]. However, the 

intensive use of insecticides, the long-term use of 

the same agents, the increase in the applied doses 

and frequency of treatments, and the rapid life 

cycle of pests result in a high potential for 

pesticide resistance selection in insects and mites 

[9]. Pesticide resistance has become one of the 

pressing problems of ecology and agriculture 

[10] because it makes it difficult to deal with 

pests and ectoparasites while increasing the 

chemical load on the environment [11]. A great 

number of researches are devoted to studying 

insecticide resistance and the degree of its 

prevalence in insect populations, revealing the 

mechanisms and patterns of its formation. The 

relevance of this topic is evidenced by the 

increase in the number of publications indexed in 

the Scopus database, which for the last ten years 

(between 2011 and 2021) has almost doubled 
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(from 616 to 1302) and remains consistently 

high over the past five years. Currently, there are 

more than 330 known insecticides, resistance to 

which has been recorded in one or more 

arthropod species [12]. Bass et al. (2015) 

collected and analyzed data on resistance to 

neonicotinoids and its formation mechanisms in 

pest populations (Cotton whitefly Bemisia tabaci, 

green peach aphid Myzus persicae, cotton aphid 

Aphis gossypii, brown planthopper Nilaparvata 

lugens, Colorado beetle Leptinotarsa 

decemlineata, etc.) that bear serious economic 

importance [13]. The variation of insecticide 

resistance in populations of diamondback moth 

Plutella xylostella (Linnaeus), a cruciferous pest 

inhabiting different geographical regions of the 

world, to OPCs, pyrethroids, and biopesticides 

have been described [14, 15]. High resistance 

levels to OPCs and growth regulators and the 

formation of tolerance to neonicotinoids have 

been detected between 2019 and 2020 in China 

in populations of the white-backed planthopper, 

the rice pest, Sogatella furcifera [16]. Van den 

Berg et al. (2022) illustrated the potential for 

insecticide resistance development in African 

countries' cotton, corn, vigna, and tomato pests 

[17]. The research conducted by Russian 

scientists also indicates the presence of resistant 

populations of insects inside the country. For 

instance, the constant growth of the multiple 

resistance of the Colorado beetle, a major potato 

pest, to chemical insecticides (OPCs, pyrethroids, 

neonicotinoids) was previously reported in the 

North Caucasian, Central, and North-Western 

regions [18], in the Republic of Bashkortostan 

and Novosibirsk Region [19, 20]. The researchers 

observed the development of resistance to 

insecticides of the same classes in the 

populations of green peach aphids Myzus 

persicae (Sulz.) in the Astrakhan Region, as well 

as the development of resistance to 

Thiamethoxam agents in foxglove aphids 

Aulacorthum solani (Kalt.) in Leningrad Region 

and wireworms Agriotes spp. in Pskov Region 

[18].  

The problem of insecticide resistance is relevant 

not only in plant protection but also in medicine 

and animal health [21-26]. Studies demonstrate 

that resistance, including cross-resistance, is 

widespread in various countries in medically 

important mosquito populations. For example, in 

Iran, between 2000 and 2020, the populations of 

mosquitoes of the Anopheles, Culex, Aedes, and 

Culiseta genera with multiple resistance to four 

groups of insecticides (COCs, OPCs, pyrethroids, 

and carbamates) were reported [27]. In South 

Asian countries during the same interval, an 

increase in the spread of resistance to these 

compounds in the populations of Aedes 

mosquitoes was identified, which are the vectors 

of such viral diseases as Dengue fever, Zika fever, 

yellow fever, etc. [28, 29]. Resistance to 

pyrethroids, neonicotinoids, and fipronil has 

been described in populations of the bed bug 

Cimex lectularius L. [24]. Juache-Villagrana et al. 

(2022) examined the effect of insecticidal 

resistance in insect vectors of arthropod-borne 

infections on their vector competence [30]. 

Tolerance to the pyrethroid deltamethrin was 

found in red louse Bovicola bovis, collected on 

livestock farms in Ireland [31]. Medical and 

veterinary organizations worldwide face the 

problem of insecticide resistance in the 

population of the housefly Musca domestica L. 

[32]. Thus far, the resistance of M. domestica to 

insecticides of widely used classes of chemical 

compounds has been described. For example, in 

North and South America, Africa, and Asia, insect 

populations resistant to organophosphorus 

(OPCs) and carbamate insecticides were 

recorded [33, 34]. Researchers from various 

countries have reported populations of 

pyrethroid- and neonicotinoid-resistant flies 

inhabiting livestock and poultry farms [35-37]. In 

Russian housefly populations, the resistance to 

COCs, OPCs, carbamates, pyrethroids, and 

neonicotinoids was also reported [32]. 

Many researchers in their works emphasize the 

need for timely diagnosis of insecticide 

resistance, more thorough monitoring of its 

spread in insect populations and resistance 

management through the use of strategies [11, 

17, 20, 24, 38]. According to the World Health 

Organization, only 38% of the surveyed countries 

in the European region consider insecticide 

susceptibility levels when choosing insecticides 

for insect vector population control, while in the 

Asia-Pacific, African, and South American 

regions, the percentage of countries using this 

indicator amounts to 80-92% [39]. Meanwhile, 

the information about the resistance profile of 

insect populations can not only allow for easier 

and less costly pest and parasite control but also 

help to reduce the chemical and environmental 
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load. 

To successfully prevent and combat insecticide 

resistance in parasitic and pest insects, it is 

necessary to possess data on the resistance 

profile of natural populations. Toxicological and 

molecular-genetic methods are used to establish 

this profile. Toxicological methods involve 

biotesting to assess the insecticide's toxicity for 

the studied population's insects, the results of 

which establish the resistance ratio (RR) and the 

proportion of specimens susceptible to the 

insecticide at a diagnostic concentration (dose). 

The resistance ratio is calculated by dividing the 

median lethal concentration (LC50) value of the 

insecticide for the studied insect population by 

the LC50 value for the susceptible strain of that 

species. World Health Organization recommends 

the use of diagnostic (discriminatory) 

concentrations or doses of the insecticide to 

quickly establish resistance. The dose or 

concentration is considered diagnostic when it is 

equal to two doses or concentrations, which 

cause 95% (99%) mortality in a susceptible 

insect population of a given species [26]. Experts 

calculate diagnostic concentrations (doses) of a 

particular insecticide for each insect species. An 

insect population is considered sensitive (or 

susceptible) to an insecticide if 98-100% 

mortality is achieved using a diagnostic 

concentration and is considered resistant 

(tolerant) to an insecticide if less than 90% 

mortality is achieved [26]. The methods for 

assessing the toxicity of an insecticide 

correspond to the way they are used and the 

biological characteristics of certain species or 

groups of insects. WHO experts have developed 

methods for detecting insecticide resistance in 

populations of insect vectors of vector-borne 

diseases and other synanthropic insects 

[https://apps.who.int/iris/]. A thorough 

description of methods for testing populations of 

plant pests and some other arthropods can be 

found on the website of the Insecticide 

Resistance Action Committee [https://irac-

online.org]. 

According to the diagnostic procedure described 

in the WHO guidelines, it is necessary not only to 

establish the presence of a resistant phenotype in 

an insect population but also to characterize the 

intensity of resistance and the underlying 

mechanism [26]. Biochemical and molecular 

methods are used to establish the mechanism 

that provides resistance to insecticides in a 

particular population. In this case, the 

detoxification enzyme systems [40, 41], 

molecular targets of insecticides [3, 42], as well 

as the presence and prevalence of alleles 

associated with insecticide resistance [43, 44] 

are studied. Nowadays, progress has been made 

in understanding the mechanisms of resistance 

to commonly used insecticides: pyrethroids, 

OPCs, neonicotinoids, spinosyns, pyrazoles, etc. 

Five alleles responsible for target insensitivity 

and hence pyrethroid resistance in insects have 

been described in the scientific literature: kdr-his 

(L1014H), kdr (L1014F), super-kdr 

(M929I+L1014F), Type N 

(D600N+M918T+L1014F) и 1B (T929I+L1014F) 

[44]. For still commonly used OPCs, Gly137Asp 

and Trp251Leu/Ser mutations in 

carboxylesterase genes are reported, which lead 

to changes in the structure of the enzyme active 

center, resulting in increased hydrolytic activity 

towards OPCs [45]. Carboxylesterases of the 

cotton bollworm Helicoverpa. armigera Hbn. are 

involved in the resistance to organophosphorus 

and pyrethroid insecticides through enhanced 

sequestration due to gene overexpression [46]. 

The review by Feyereisen et al. (2015) is devoted 

to the analysis of mutations affecting 

acetylcholinesterase genes found in different 

insect species, which cause resistance to OPCs 

[47]. As for the relatively new insecticides, such 

as chlorfenapyr and chlorantraniliprole, the 

exact mechanism of resistance development is 

not fully established. A possible mechanism of 

resistance development to chlorfenapyr has been 

described for the spider mite [48] and boll weevil 

[49]. It is associated with an increase in esterase 

and glutathione-S-transferase activity, as well as 

with a decrease in cuticle permeability. 

Meanwhile, the study on resistant cabbage moth 

populations concluded that the enzymes 

mentioned above are not involved in forming a 

resistance to chlorfenapyr [50]. When studying 

insect resistance to insecticides, a lot of attention 

is paid to epigenetic effects, the interaction of 

resistance-related genes, and the regulatory 

factors triggering their expression [38]. 

Identifying specific genetic mutations associated 

with resistance to certain insecticides may be 

useful for developing molecular diagnostic 

methods for insecticide resistance [38]. In 

addition, the study of molecular mechanisms of 

https://irac-online.org/
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insecticidal resistance to specific compounds and 

the potential for its formation in field insect 

populations is important for the search for new 

active agents and the development of new 

pesticide formulations and strategies for their 

application.  

CONCLUSION 

The examples presented in this review show that 

insecticidal resistance in insects is one of the 

urgent issues of ecology and agriculture. The 

toxicological and molecular studies of the 

resistance profile of insect populations can help 

develop a more appropriate strategy for 

resistance management and thereby reduce the 

chemical load on the environment. 
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