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ABSTRACT

The present study deals with the effect of sliptten heat transfer and entropy generation charasters of
viscoelastic fluids in a channel. The slip has bewdeled using three different slip laws namelyyiéigs non-

linear slip law, Hatzikiriakos slip law and asymptoslip law. The viscoelastic nature of the flisdcaptured using
the linear version of simplified Phan-Thien-Tan@PTT) model. The flow is assumed to be hydrodigadi;mand

thermally fully developed with uniform heat fluxubdary condition at the wall. Viscous dissipatienincluded
while axial conduction is ignored. The governingiaiipns have been solved analytically and the readmehind
the observed trends have been explained in d&pécifically, Nusselt number shows a complex degaredon the
viscoelastic group, slip coefficients and the puesgradient. Finally, a comparison between Hatilkios slip law
and the asymptotic slip law shows that the sliposief and consequently the Nusselt number is higber
Hatzkiriakos version of slip law

Keywords. Phan-Thien-Tanner; entropy generation; convecteat kransfer; slip laws; non-linear Navier;
Hatzikiriakos

INTRODUCTION

There are numerous processes in the industry witerdluid flow depicts a viscoelastic nature. A mpiaent
example is the extrusion process in the polymeusihy. Here the gap between the barrel and thewvsofethe
extruder is small and thus the concomitant flow tenmodeled as the flow between two parallel pl§igs
Moreover, the flow of melts in pipes (before exiomd takes place at elevated temperatures whichiants an
investigation into their heat transfer charactarsst

As mentioned, the rheological behavior of the fluiduch processes exhibits viscoelastic charatiesi One of the
most common mathematical models to simulate visctiel behavior is the (simplified) Phan-Thien-TanfsePTT)
model [2,3] which is the focal point of study irigtpaper. Additionally, the slip of the fluid atlgbboundaries is a
very common phenomena in polymer processing, éfifgthe quality of the final product [4].

There have been numerous studies to investigatiothiecharacteristics of viscoelastic fluids. Théselude studies
related to Couette flow [5-7], channel and pipenl®], Couette —Poisueille flow [9] and annulanil¢10]. On the
other hand, there has been only one study whickstakio account the effect of slip on the hydrodyits of

viscoelastic fluids- a very extensive and detadtdly by Ferras et. al. [11].

Compared to the hydrodynamics, the heat transfépwaf of viscoelastic fluids has not been studieteasively in

literature. There have been some studies pertaittingeat transfer of viscoelastic fluids in chasnslibject to
uniform heat flux [12], uniform wall temperaturd 3] and with moving upper plate [1]. In all thesgpprs, viscous
dissipation has been accounted for as it is vdeyvaat in polymer melts. There has also been systtithe Graetz
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problem with viscoelastic fluids [14]. But thereshiaeen no investigation in extant literature of ¢ffect of slip on
the heat transfer characteristics of viscoelahtids.

Investigation of entropy generation in a systernmiportant because entropy generation determinesrmunt of
“lost work” in a system [15]. To the best knowledgkthe author, there has been absolutely no iipetgin of
entropy generation in a viscoelastic fluid.

The aim of this paper is to study the heat tranafet entropy generation characteristics of theoéksstic fluids
modeled with s-PTT model and subject to differgmtes of slip at the wall. The flow is hydrodynantigand
thermally fully developed, viscous dissipative autbject to uniform heat flux boundary conditionisTpaper is the
first study of the effect of slip on the heat ti@nscharacteristics of viscoelastic fluids. Morenueis the first study
of the entropy generation characteristics of aoetastic fluid, with or without slip. In this resgethe paper fills a
void in archival literature.

MATERIALSAND METHODS

The remainder of this paper is arranged as followsSection 2, the slip laws used in this studyehdeen

introduced and described in detail. In Sectiorh8,relevant conservation equations of mass, momeahd energy
have been solved taking into account the slip |&qressions for velocity distribution, shear srésstribution,

temperature distribution, Nusselt number, entropyegation distribution and Bejan number have beesgnted in
this section. Section 4 gives a detailed explanaticthe results and the reasons for the trendsrebd. Section 5 is
the conclusion of this study. The no slip boundaogdition is the most general velocity boundarydition used in

literature to model the velocity at solid-fluid énface. But despite its ease of use (and the carsegbiquity), this
boundary condition is an assumption and cannoebget from first principles [16].

A fluid is said to slip when there is a non-zeradgential component of fluid velocity relative toetlsurface in
contact with it. The nature of slip depends on miatyors like surface roughness, chemical compsitif fluids,
presence of dissolved gases, characteristic lesfgtie flow etc.

A slip law relates the slip velocity of the fluid the physical characteristics of the flow. Thdiear slip law was

proposed by Navier [17], and later rigorously dedvfor gases by Maxwell [18]. The slip law introddca new

parameter called slip length/slip coefficient whimbrrelates the slip velocity with the velocity dient/ shear stress
at the wall. This slip law is generally used forvidenian fluids and its use for non- Newtonian flidas been
scarcely reported in literature.

An advanced version of Navier’s slip law is Navéenon-linear slip law which is given by:
uw = (iryx, w)m I(nl (l)

For bottom wall, “+” sign is used, since shear sris positive there (according to the positionth&f coordinate

axes shown in Fig. 1 and explained in next sectiBimilarly, "—" sign is used for top wallknI is the non- linear

slip coefficient whilem ( >0 )is the slip law exponent. For=1, the linear Navier's slip law is recovered. Thiip
law has been able to correctly model the slip fangnexperimental conditions of Poisseuille flow{aH.

Navier's non- linear slip law predicts that sliplhvgtart as soon as the fluid flows, i.e for anynrmero value of shear
stress. Hatzikiriakos proposed a slip law whichagiglthe onset of slip until the shear stress atvifiles exceeds a
critical stress [22] . The slip law proposed by handerived from Eyring’s theory of liquid viscogitlt is aptly
named as Hatzikiriakos slip law and is formulateddne-dimensional flow as:

0, K SINNEK o7, = 7o) o[ Tyen] > T
° [Tl <7 @

YX, W

In literature, there are various instances wheriikaakos slip law was used to model the slipcimannel flows
[11, 22].
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The third slip law employed in this research papehe asymptotic slip law [ 11, 23] given by:

U, = Ky In(F k1, ,+1) 3)

In these equations, the slip coefficierks,, M K., K,,, K., k, are experimentally determined for different
fluids. They control the amount of slip at the waatid influence the shape of the slip velocity vsaststress curve.

The governing equations of the viscoelastic flowssist in the continuity equatiorrop'l'l = Oconservation of

mass)5 (U = 0,and the momentum equatiop(u.J)u = C.(—pl +,u|_Du + (DU)TJ+ F) conservation of linear
momentum)

p(@ +u D]]uj =-0Op+ u0%u+ 008,
ot where u is the velocity vector, p is the isostgiressure ands the
viscoelastic extra-stress tensor. The left hand sidhe equation corresponds to the inertial ¢&gfetbe three terms
on the right hand side of equation are the contiobg of the pressure gradient, the Newtonian viscsiress of the
solvent, and the viscoelastic stress of the polgmeespectively. Finally, the equations of consiowa are
supplemented with a constitutive model which clabessystem of equations. We use a generic paliffarential
+—f E]O-)g :%

viscoelastic model of general forrga%+u Mo —(o- Mu +0u’ B') g, where f 6) is a

L — T
relaxation function, and ~ (Ou+Du )/2 is the strain rate tensor. Depending on the egerof f (), popular
viscoelastic models can be recovered [1], see thblehe material parametessuS, uP and\ are the density, the
solvent viscosity, the polymer viscosity and thiaxation time, respectively. Table 1 defines thente mentioned
abovec is Elasticity of the fluid, parameter in PTT mad&P/L Predicted drop in pressure for fully develofieg
per unit length using the Phan-Thien-Tanner (PTDdek APexcesgsThe difference of the measured drop in
pressure through the model and thedrop in pregbateoccurs when We = @&Pexcess? is the difference of the
measured drop in pressure through the model anfulliyedeveloped pressure drop in PTikx Shear stress at the
inlet, also the normal stress at the inlet. WeWsissenberg Numbehk<u>/y; Wherel is the time constant that
describes how fast the polymer “forgets” its shape; is the average velocity, and y is half theghebf the model.

Table 1. Expressions of therelaxation function f (¢) in the generic congtitutive equation (4), for different viscoelastic models

Viscoelastic model
Relaxation functionf (O-)

Oldroyd-B 1
Giesekus 1+ (0'/\/,“1)0
Linear PTT l+(£/]//11)tl‘(0')

Exponential PTT exp[(f/l/ﬂl) tr(O')]
FENE-CR [1+ (A/,Llle) tI’(O'):|_1

In dimensionless forms:

.o, _1-\1-&(2-8)r

o, = =

n/2A ¢
and
Z.* - pxy

n/2A
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imo, =1""
Wheref -0
f=1ee 29 Uy:Ux_—{
So 2 in Linear PTT and 2_4(. In a same way :
L1+l g

X

Which has a solution of

_ _ 1 * 1_5 %3
Ul o= V== T +2—£r

A(2-¢) -¢
or
2.3
u:&y2 +£/1 pr y4 +umax
n n

while for this research, we non-dimensionalizedrgypiantity; that with our boundary conditions (ddised in the
next section) give us the following relations:
T
u= &YZ + WY+
Y Ui

e’ 3y 4 2 3 2y 2 3 Py
F(pXY +ApZT, Y +Bp,T2Y 2+ 42 ) u=—=y(y-h)

is comparable to 2u

To use the correlations above, the tésfhmust be calculated at the giveand We. The first normal stress
difference, N, is calculated as Ncxx - tyy, but these stresses are measured at the intgeayty = 0, so N =xx.

3 2
V =—u _)V:—h(y_—y_h

+ ch
from continuity 3 2 With BC of C- V(O) =0 and from symmetry

3 —
V(h)=-v, = Pl oo O e

— m - p

2 2
&:6@ szﬁAp;aX:E(Lj 1:_611(1_1J
&NV /h \h 2\ h V, hhlh 7 4

with the velocity of " m

3 2 332
w4 AN =Bl oo B e
vV h h As‘z - OWe have 7 n

m

for half length

So we should change

_— ] - —_— T
p=Re, p= 'uSto soIveRe(u'D)u =0.(=pl +/JSIDU +(Du) J+T) Also the general form PDE for the
solution of
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|7 To_
T, T,|

y

Wi(uD)T+ @UT+TO Y )

+4, [ (Ou)+(0u)" | "
Where is for each component

0 0
uldd=u—+v—

ox oy @

The extra stress contribution due to the polymeiven by the following Oldroyd-B constitutive réfan:

AT
T+A—= u
A 2Teel)

3)
where the upper convective derivative operatoQoiroyd derivative) is defined as
AT _ 9T, woyr - [(D uT +T(Du)T]

At ot (4)

The polymer is characterized by two physical patanse The viscosityjp and the relaxation tinfe The fluid is

ou
treated as incompressible with a constant depsitiye flow equations rea;d)a—t + p(u .D) u=lo,00=0

T — Tll T12
H [ T121 T22
The extra stress tensor is symmetric:
Therefore, it is necessary to solve three additieqaations, for the three components in Equatioto@ether with
three equations given by Equation 5 for the presaad two velocity components.
The Weissenberg number is defined as:

R (5)
where Uin is the average fluid velocity at the inR is the radius of the cylinder, aihds the polymer relaxation
time. (An alternative name, which is often usedtfas nondimensional parameter, is the Deborah muni zero
Weissenberg number gives a pure viscous fluid (lastieity) while an infinite Weissenberg number iim
corresponds to purely elastic response. Due tedhgective nature of the constitutive relation, sléution stability
is lost with the increasing fluid elasticity. In gatice, already the values Wi > 1 are consideredh dsgh
Weissenberg number for many flows of an OldroydtBdf By adding least squares-type stabilizatiomteto the
Galerkin finite element formulation, you can impeostability and obtain solutions over a larger eargf
Weissenberg numbers compared to a standard Galenkinulations. The present model makes use of sesrst-
squares stabilization technique. The flow is steiy, and the problem becomes dimensionless by i&itJin, and
the total viscosity; =ns +np. The nondimensional equations system is theviatig:

Re@O)u = O.(-pl + g.|Ou+ (Ou)" |+T)
T+Wi(uo)T-[@uT+Ta Y ])

= [ (Ow)+(Ou)" | ©
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where the Reynolds number is Re = R Wihp, and the relative viscosities of the solvent amdymper are,

respectively:us =ns /n and n . Weak formulation of the above equations anddabilization
terms needed for the extra stress equations arshogtn here. Because of the flow symmetry, you modly the
upper halves of the channel the cylinder. At thanctel centerline, use the symmetry conditions of mermal flow

un=0
and zero total tangential stresgq'n)'t =0 wheren andt are the boundary unit normal and tangent vectors,
. . . S + =
respectively. On a horizontal line of symmetry, kger condition is reduced t%'uselz T, =0 . At the channel

walls and the cylinder surface, the model useslipacenditions for the velocity together with therdition for the
normal component of the extra stress:

(T'n)'n =0 .Polymers are unable to exert a normal force @nwthall because no polymer can span the wall
boundaryHalf-Inlet Here you specify the developed parabolic velocitfife and the corresponding extra stresses
components:

3
u==(@-s°

5 ( )

2
[ ou
T, = 2,upW|(a—yj
ou

T, = H, (a_y]
T,,=0

()

where the geometry edge parametearies from 0 to 1 along the half-inlet bounda®utlet At the outlet, use the
pressure boundary condition for developed flow; ahé/ stress acting at the boundary is due to tessure force

Pout:

on=-p,n ©

A schematic of the physical model under study maghin Fig.1. There are two parallel plates segar&ty a gap of
width 2h. The fluid flow between the plates is maintaingdlronstant pressure gradienpefwhich is numerically
a negative quantity. Uniform and equal heat fiju imposed on the two plates. The heat flux is rextias positive
into the walls. The fluid is viscoelastic and itsess-strain relationship is captured by the sifigaliPhan-Thien-
Tanner model. The flow is hydrodynamically and thally fully developed. The slip at the wall is camd by
Navier’'s non- linear slip law, Hatzikiriakos sligw and asymptotic slip law.

The x- coordinate is along the centre line of tharmel while the y-coordinate is perpendicularh® tentre line
pointing towards the upper plate. The fluid flowcors in the direction of positive x.

In this paper, we wish to study phenomena relatadsicoelastic fluids. These fluids show charastars of elastic
solids as well as viscous fluids. Whether a fluiowd respond elastically or viscously will deperat only on its

structure but also on the kinematic conditionscgegiences. A viscoelastic material will returnit®original shape
when the external stress has been removed (eftasfionse) but it will take some time to do so @iscresponse).
Some amount of stored energy will be dissipatestcfuis response) while some will be recovered (elestponse).
For viscoelastic fluids, shearing motion may giige ito stresses in normal direction too.
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Fig. 1: Schematic of the physical model under study

The simplified Phan-Thien-Tanner model of visocitaBiuid behavior has been used here. This maosleerived
from the network theory and has been used extdysivditerature to replicate viscoelastic fluid Haevior [2-3,8-
13]. For this model, the constitutive equationiigeg by [2-3]:

f (trt) + A% = p(0Ou + (Ou)") ©)

Here,f is a function of trace of the stress tensdiis the relaxation timef is the viscosity coefficient and stands
for upper convective derivative as shown below:

T :%wmr—[(muf&ﬂmu] (10)

The functionf can take two forms- linear and exponential. Thedr form [3] is given by:

f(trr) =1+ ﬂtl"l,' (11)
While the expoZential form is given by [2]:

f(trr) = exp(Z—/]trr) (12)

Here £ is the elongation parameter which controls the istiganing behavior of the fluid. Higher is the walof £,
more will be the shear thinning behavior of thedlurhe linear form is a linearized version of ggonential form
and is accurate when the term in the bracketsfohbnd side of Eq. (9) is small. According to Tanfi24], the
linear form is accurate when the molecular defoiomats small, i.e. in the case of weak flows. Pfjmevs and
channel flows are weak flows where the resultsipted by linear form will be close to the exponahform. For
this reason, in this research article only lineant of s-PTT model has been considered and thétsgmesented
thereof.

RESULTSAND DISCUSSION
The heat transfer and entropy generation charatiteriof the exponential model will be studied iseparate,

upcoming paper.
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For the EDL layer we have

2
d_lé/ = Ms”qh[ﬂj (13)
dx &€, k,T
2nze
- &eY x=2 and k= 27 (14)
kT a EEKT
d? .
7 =(q?sink{p) 9
d(]/' —0atXx=0 andJ = f atX =1 where & = 2,8 (16)
k,T
‘Z—‘g = J2(ka)[cosh@) - cosh@@,)] " (17)
— ~1 E —ka(1l-X)
¥ =4tanh'| tan 2 e (18)
For the case of planar, fully developed flow coeséd here, the equation for momentum balance redoce
dr
X = (19)
dy
Integrating once, we get:
T =PY+a (20)
The constitutive equations for the simplified PTodel reduce to:
f(T, +7,)T, =241, (Z;J (21)
f(r+7,)7,=0 (22)
ou Jdu
f(To+T,)7,, = ”(ay] +AT yy(a_yJ (23)

In Eq. (13) , eitherf (z,, + 7, )is 0or7,,=0.If f(7,, +7,)=0, unrealistic results are obtained. This leads to

r,,=0.
After substitutingryy:O, divide Eq. (14) by Eqg. (12) to get the followin
24 2
r,= 7 (Tyx) (24)
So, the set of governing equations reduces to:
=pPYytg (25)

155
http://www.easletters.com/issues.html



M. Oveisi and M.Y.Abdollahzadeh Entomol. Appl. Sci. Lett., 2016, 3 (5):148-168

T = ﬁ(T )2 (26)
XX ,7 yx
r,,=0 @27)
f _ (0u
(Txx + Tyy)ryx =1 a_y (28)
The above equations are non-dimensionalized wétfdhowing dimensionless variables:
T
y=yih x=Xc=- 8 =Ygz P oo Tx o T
h [UUJ U (UUJ (nu) (r/Uj
h h? h h
And De= /]TU (29)

Here,De is the Deborah number; it is the ratio of elas@havior and the viscous behavior of the flow. Whis
characteristic velocity, mostly the average velpoitthe flow.
Since the analytical solution would be

d?v, dp
L-—+E p=0
H e dz 14 (30)
__ . zey 31
p=-2 rgjzve)smh[ T J (31)
— L
G, = nk, T v, = Ve and E, :_|:7 (32)
(g e
dz

d*v, _2G{E, d°F , _
&’ (ka2 dX’

0 (33)

d_wzﬂzo at )_(:0 and w:g and \TZ:O X:l (34)
dx  dx
o _1, .,  2GEE(, @
:—1_ 2 - =S 1_7
R >
ls = JvzpdAc (36)
A
P o - |
p=——=-2sinh{) and |, =—>— @37)
nze 2ynzea
I, =-2[ v, sinh@)d(x) 8)
I 4G1Es
=i le) o s e 39
=(-1y) ((ka)z j(lz 1) (39)
— 4 _ 1+”eka ”eka . Kay _ 15 (_makay] T e 40
(N (ka)3{ ka{ln(l_qekaJ+(qeka)2_J+[L|2(/7e ) — Li,(-ne )] [L|2(/7) Li, ( ,7)]} (40)
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_8 [1— 2ne® tanh™ (7e'®) _1-2ntanh™ (/7)}

|, = 41
? ka (7e'®)? -1 n?-1 4D
4 Oeka ,7
|, =—— - 42
3 ka{(nek's‘)2 -1 p? —J (42)
n = tanh§ /4)e™ (43)
Li,(8) =~ @dt (44)
l.+1,=0 (45)
2
P+ S0 (46)
&
G, (ka)?
I SR
E (47)

*T1-4GG,(1, - &l,)

By using the dimensionless variables, we get thedimensional form of the governing equations aswshbelow:

T'xy = Gyl+ C'1 o
r = 2De(Gy* ) (49)
ou' T

o = [1+ 2eDE’ [Gy'+ 01]2][ Gy+ ¢] )

The velocity boundary conditions are symmetric,the same boundary conditions are applied onaivetd and
upper plate. This mears’;, = 0. So,

g—;: =[1+2:D€’[GYT’ | GY] (51)

We integrate the above equation once to get:
12

14
u'(y'):c%y +2£De2G3yT+ c, (52)

Here, C', is an unknown constant whose value will depentherboundary condition/slip law employed. The non-
dimensional form of Navier’'s non- linear slip lasvgiven by:

kn| U m—1,7 m

u', =(Fr'
w ( hm

)"K', where,K',, = (53)

yX W

At y'=1, the above equation reduces to:
u', =(=G)"ky (54)

Using Eq. (25) and Eqg. (27) we obtain the following

(=G)"k". :%+ 2¢DEC | o

n ) (55)
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G 2:DE€G
=, =(-Q)" Ky ——— (56)
2 4
On the other hand, the non-dimensional form of Hatakos slip law is given by:
u',, =K'y SINh[F (K, 7 3)] (57)
k K, 17U
Here k', =% k', =-H2— (58)
H1 U H2 h
At upper platey’=1, the equation reduces to:
u', = k'y, sinh[- (k},, G) (59)
From Eg. (25) and Eq. (32), we obtain the followiradue of € for Hatzikiriakos slip law:
. G 2:DE€G
c', =K'y, sinl[-(k}, G -—-—— (60)
2 4
Following the same procedure for non-dimensionahfof asymptotic slip law:
u', =k'yIn(Fk', 7', ,+1) (61)
Here,
k K,,/77U
k' = _Al’ k' = —A (62)
Al U A2 h
which gives the value df2 as
G 2cDE€G
C'2 = klAlln(_klAz G+1)_E_T (63)

Summarizing, expression for non-dimensional vejopitfile between the two plates is given by Ed)(2

12 14
u(y) =Y +2£De2G3y7+ c,
Where,
- n., G 2eDEC Navier’s nor-linear slip lav
(k=5 -2
2 4
: D . G 2DE€G
€2 = < K Hlsmh[ e G)] 2 4 Hatzikiriakos slip law
K'y IN(=K',, G+1)—% —% asymptotic slip law
N—

The two dimensional energy equation for the thelynahd hydrodynam
dissipative fluid where axial conduction is negéetts given by:

oT _ kaZT
PC, U& = 6_y2 o (65)

Here, @ is the volumetric viscous dissipation rate in filogv. For the flow under consideration, it is given
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p=1,% (66)

This reduces the Eq. (27) to
oT 0°T ou
C U—=K—+7,— 67
Pl ox ay? ay ©

The pertinent (thermal) boundary conditions for @leve equation are:
oT oT
_k_ q k_

=q (68)
Y|, oy

y=h

Since the flow is thermally fully developed and jgabto uniform heat flux boundary condition,

oT _dT,

— = ——=constant, (69)

0X dx

which means that the axial gradient of the tempegaat any point equals the axial gradient of tleamtemperature
and is a constant.

This reduces Eq. (32) to
dT, 0°T . du
PCU— = K—- — (70)
dx oy ay
There are two dependent variables in the abovetiequad,,,andT . To eliminateT,, the above equation is
integrated once across the gap between the plates:

" dT f il
pc u—= dy= dy+ | 7, — d (71)
[P g dv=]iGs I oy

Using the boundary conditions mentioned in Eq. (8@ obtain the following:

h
j ryxa—u dy (72)
< oy

h
du
20+ |7, —
:>dTm = ) 'Ih " d (73)
h

d
X j pc,udy
-h

Insert this expression in Eq. (32) to obtain tHfeing:
h
2q+ [ 1, du
4 dy 0T au
pcu—; = k6 5 +rYXa— (74)
_[ pc,udy y y
-h

The non-dimensional form of temperature is intrazthias:

159
http://www.easletters.com/issues.html



M. Oveisi and M.Y.Abdollahzadeh Entomol. Appl. Sci. Lett., 2016, 3 (5):148-168

o KT-T)
q(2h)

Using the non-dimensional variables introduceddn #4) and in Eq. (77), we obtain the non-dimenaidorm of
the energy equation as:

(75)

1 , dul
2 1 J.T yX ' 1
d’¢ ., . du_ . _ 2 Cdy _ u
q '2+TyXBrF—uXBI’ 1 =3 (76)
y y ju'dy' f u' dy
-1 -1
WhereBr is the Brinkman number for viscoelastic fluidsegivby[ 1, 12-13]:
2
Br = nJ (79)
(2h)q
Using the expression for velocity profile in Eq5J2we obtain the following:
1 2 3
[utdy'= £be’G +£33+20'2 = Asay) (80)
-1
Similarly,
1 ' 2
I ,yxd_ul -2C | 08xeDex G (81)
o T dy 3

du
Substituting the expressions far; F and those in Eq. (40) and Eq. (41), the energwgop reduces to:
y

2
g f+GZBrx y'?+2eDE G x Brx y*-
y
eDEEG? y'4+9 Y24 (82)
i eDe’G® y'4+Ey'2+c' _ 2 2 2 o
2 2 2 A
2
Br{zi +0.8x eDe? x G“}
Where, K= X (83)
Integrating once with respectyo
13 5
ﬁJerBrxy_JrZEDezG“x Brx y°
dy' 3 5
eDe’G’ y'5+9y'3+ ¢y (84)
% eDe*G? 5. Gy o vlo 10 6 2 v R=0
BRI y 6 y 2 Y A
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Where K is a constant of integration.

Sinced—gl =0=> ? =0 (85)

y'=0

Inserting the value oRin Eqg. (44) and integrating the resultant equatibe,following is obtained:

oy {ZEDeZG“Br KeDE G EDéC:T o
(y)+ - - +

30 60 60A

2 - K ' ' =
GBI _Ko)r2a-—C |y#-|KC2 Lol e kg
12 24A 2 oA

(86)

Here, K is the (second) constant of integration. To firsdvialue, we use the boundary condition t@ét) = O

= [ZsDeZG“Br KeDE G eDécﬂ
—=K=- - - -

30 60 60A &

7
2 . /A1 1
G Br—(KG)/24— G |, Kc2+c_2
12 24A 2 2A

To conclude, the expression for non-dimensionaptatured is given by Eq. (46) where the value of constdnt o

integrationR is given by Eq. (87). To obtain the best profilevelocity number also we can consider the follogvin
formulations :

‘ 0z f 6X2 Cp dx
n 2
oT _dT, _dT, _ q + U J‘a(%] " "
0z dz dz  pwv,c,a pv,c,a’l dx
T -T 2 ,
= and Br= H@( dp/"dZ)/,u) o
(9"a/k) a

2 _ 2 2
% +(\_>/Z j{1+ BrE[O:RZJ dz} = Br(‘f{j (91)

1+ BrJ

6 =Br[E, - (x-1)A, -C,]- [F, - (x-1)B, - D,] (92)

zm

J ) é{[Li L (7€) = Li, (=6 = [Li, (7) - Li, (-m)]}

=4 ka
;-1 _8GJE, {In(lﬂm

3 (ka)? 1-ne (©3)
+32(G£)2E§{ 11 }

(ka)®  [1-(e™)* 1-n°]
A, = C2E 1 () Ly (] + 222V B 1 (04)

(ka)® (ka)*  1-n°
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_AGEE .
s = ey [Li, (7) - Li,(-7)] (95)

IR <= N R Y A
"2 @) [ka{le(ﬂe ) —Li, (-ne )} 2{L|3(/7e ) - Li(-ne )}]
(ka)*  \1-(re)*
DH:E_G152E5+461{E5
24 (ka)?  (ka)'
=15 ka)® [kax{le(ﬂe ) —Li,(-ne )} 2{L|3(/7e ) - Li,(-n7e )}]
+ 16(615)42 E52 |n( (ﬂekai)f ZJ
(ka) 1- (7e'*)
x*  X* G’EX® | 4G/E,
= _ 4+ - +
T 24 4 (ka)? (ka)*
R

Q = \_/ZI'T]
2aWy,
_1, 4GZE, [(ka)? o
3 (ka)® | 2
_ 2(-dp/dz)a’w

CH
(96)

[Li, (7e*) - Li (-e*)] ©7)

E
(98)

[Li (7e) - Liy (~17e)] 99)

oL

(101)

Q|
I

Vam = Ll v, aX Li, (7€) - Li,,(-ne*)} - {Li, (7) - Liz(—n)}} (102)

(103)

Q== (104)

Ho_ + _ (105)

_ 2a(-dp/dx)
10 fvzzm
Re=4ap v, u (107)

8_8 (108)
\Y

zm

Which corresponds to the EDL layer of
dzw — k 2
e =(ka)°@ (109)
_ & sinh(kax)
sinh(ka)

(106)

f Re=

(110)
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— Z2 . —
v :%(1—22)—2E361‘z {1—S'nh(ka()} (111)

(ka)? sinh(ka)
I, = ‘ZI:VZWCR (112)

- 1. (2EG¢? 2E,G¢?
> 2{2("‘ 's) [ (ka)? J'”(ka)zsinh(ka)“} (13)

_ coshka) -1
o = ka

N _
I _{ka*- (ka)g}cosh((a)

(114)

2 . 2
(ka)? sinh(ka) - ka)®

I =%{kiasinh(ka) coshka) —1} (116)

a = ¢ Isinhka) (117)

(115)

aG, (ka)?
— (= 1s)
E, = - |
140654 (s ~ Ginngea)’
2G,&°E, | coshka) -1
(ka)? (ka) sinh(ka)

(118)

1
v, =—- (119)
3

f Re= __ 4 =8 24[&J (120)
L 6G,¢ °E, [1— cosh«a)—l} Q %
(ka)® (ka) sinh(ka)

_1  4EG/é?
"3 (ka)®sinh(ka)
255261234
(ka)® sinh? (ka)
A = 4E G, E?
(ka)® sinh(ka)

_ 2EG/¢?
" (ka)® sinha)
_ 1 4EG¢?
? 712 (ka)*sinh(ka)
N EszGlzg?4
2(ka)* sinh? (ka)
5 EG,E?

D, = —
2 (ka)*

J [(ka) sinh(ka) - coshka) +1]

(121)

[sinh(2ka) + 2kal]
(122)
(123)

C [(ka) cosh(a) - 2sinh(ka)]

(124)

[coshieka) + 2(ka)?]

[(ka)? - 2] (125)
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x* 4E_G/? _ _ : _
E, = —-——221|(kaX) cosh(kax) — 2sinh(kaxX
® 12 (ka)*sinh(ka) [(kax) coshteas) (kax) -
_ZG 2?4 (1 )
E. G, [cosh@kax) + 2(ka)?%?]
2(ka)* sinh?(ka)
—2 = T2 . _
F, =X (6-x?) - 208 Glf (ka)?x2 — 2 SNN(kex) (127)
24 (ka) sinh(ka)
Withouth the slip wall effects we have :
a a 1
T o= Z\NJO Tc,p v, dx _ J'O Tv,dx _ IO Tv, dx (128)
IonCp avzm vzm
2
1 \7Z
6, = I°6{Vzmj ox (129)
1+Brd |t
Br Gvgd>-<—£ e Jjovadz
6, = T (130)
Vzm
GVG = VZ[EH - ()_( _1)A9 - CB] (131)
H, =V,[F, - (x-1)B, - D,] (132)
Nu= hD, ___ 4aq -4 (133)
kf kf (TW Tm) gm
Nu = W (134)
Br [/ G, % —(“ B”j "H,, ok

The most relevant non-dimensional parameter in ection is the Nusselt numbeX). It is a dimensionless form
of the heat transfer coefficient near the wall (HTC

HTCx4h
Nu = e (135)
(for parallel plates, the hydraulic diameter itiimes the gap).
For convection in a channel, the HTC is defineteims of the mean temperature of the flow:
HTC=a/(Tw-Tm) (136)
Writing in non-dimensional terms, the Nusselt numieeluces to
-2
Nu=— (137)
8
1 1
ju'edy' j u'e dy
Here, 8, (mean-dimensionless-temperature}; =1 — (138)

ju'dy'
-1
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The numerator of Eqg. (51) is obtained by substituthe expressions for dimensionless velocity pFsfand
temperature profiles from Eq. (25) and Eq. (46pessively.

AG  AxeDE G , (2) BG Be De & (2]
+ +AC,X| - |-———————-BxcC,|— |-

! 5 7 7 9
Iu'@dy': _ _
=1 CG CxeD€G 2Cxc, Kx G KxeDé G =,
- - - - —-2xKc',
9 11 7 3 5
(139)
Here )
= &4.0_'_2
2 2A
S
B=| C B _(Keyr2a--S (140)
12 24A
c-|26DEG'Br_KeDEG ¢ DEG
|30 60 60A

Thus, substituting the values Af B, Cfrom Eq. (53) into Eq.(52), we calculate the nuater in Eq. (53) and get
the expression f09m. This is then back-substituted in Eq. (50) to obthe value of Nusselt number.

For the special case of Newtonian fluid with zerscous dissipation, the Nusselt number reduces2é ®&hich
shows a perfect match with the data in availaldégdiure [25]. For any non-Newtonian fluid, theeraf volumetric
entropy generation rate is given by [15]:

2 2
S"'gen:L2 (a—Tj + 9T |+ 2 (141)
T\ 0ox oy T
Substituting the value ofpfrom Eq. (28)
2 2
. 4
S'"gen = Lz (a_Tj + ﬂ +_yxﬂ'l (142)
T ox oy T dy

In non-dimensional form, the above equation redtices

1 dul
1+Br| 1’
Nogn Nl A I Tdy' |, yP [%j: Brxy . du .
s genk_ 2 1 2| gy oy +1) ¥ dv'
O+ | pefyay | [0y @Dy
-1
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2h
In the above expressioN; is the entropy generation numbey/ is dimensionless heat flux equaIin?(j and
w
pc_U(2h)
Pe is the Peclet number which has the expressﬂgki. For the case treated here, we have neglecteld axia

conduction and that mearl3e — o . This reduces the expression for entropy generatio

N :—lﬂ2 96 2+_Br><lﬂ r' du' (144)
T legp+0t\oy')  (Gp+1) Ty

In this expression, the first term on the right ales entropy generated due to heat transfer andeitend term
refers to the entropy generated due to fluid foicti

The average non-dimensional entropy generationfoat@ cross-section is given by:

_[Nsdy'
<N >== 5 (145)

The expression for non-dimensional entropy genamati Eq. (144) conveys the information about thtaltentropy
generation rate. But it does not show that ouhefttvo entropy generation mechanisms namely, haasfer and
fluid friction, which one dominates. This informati is provided to us by Bejan numlige[26]:

Be= EntropyGeneratedFromHeatTransi (146)
TotalEntropyGenerated

In the current case, this reduces to:

over(s)
SCERCY

S

(147)

In the preceding sections, the problem statementlean presented and the mathematical equatiorsrgog the
hydrodynamics, heat transfer and entropy generatiamacteristics of the physical model have beemdtated. In
this section, the results will be presented throsigitable figures and tables. The reasons forrdreds observed will
be discussed threadbare and an attempt is madainanre insight into the physics of slip flow abeoelastic
fluids.

An important parameter of interest in the studyistoelastic fluids is the viscoelastic group‘De2 - the product
of elongation parametef and De”. Deborah numbeiD) can be interpreted as the ratio of elastic fotoagscous
forces. A high value obe ensures that the fluid behaves like an elastiid sehile for low values ofDe, its
behavior will be close to viscous liquids. For tiesson, the results in this paper are presentetWio different

values of £De? -namely, 1 and 4. The results have been divideu timee sub-sections: Navier's non- linear slip
law, Hatzikiriakos slip law and asymptotic slip laldue to symmetry, the results have been shownorityrone half

of the channel width. Finally a comparison hasnbesade between the results for asymptotic slip &
Hatzikiriakos slip law.

For Navier’'s non- linear slip law, the values ot tphertinent parameters are shown in Table 1. Tleevaf
Brinkman number has been taken as constant betaigffect ofBr on heat transfer characteristics of viscoelastic
fluids have already been studied in literature J#2-
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The values of the non- dimensional pressure grag&n non-dimensional heat qu%/f), slip coefficientsk’,,, and
m are consistent with those used elsewhere inlitexd11]. Form, a value of 1 makes the Navier’'s slip law linear
while that of 2 relates to Navier's non-linear $haw.

Near the core, the slope turns to zero for eacfil@rdhis can be explained as follows. The appavéstosity of a
non-Newtonian fluid is expressed as:

T

M= = L (148)
ou'  1+2eDe’x7’,
oy’

2
As the value oféD€ increases, the apparent viscosity decreases. &beake in apparent viscosity is more
pronounced near the walls where the shear str(efs'%s) are higher. It means that the shear thinning iehaf

2
fluid is enhanced with increase D€ , leading to higher velocity gradients [27, 28].drinciple, sinceDe is
defined as the ratio of elastic forces and visdouses in the fluid, a high value 8fe means that the viscosity of
the fluid will be low and the shear thinning belwawvill be enhanced.

2
A more mathematical approach to understand thiy isoking at Eq. (25) which conveys that an insgem ebe
causes the velocity to increase. Since the velatitye wall is fixed by the slip, the increasdels mostly in core
region. The increase in core velocity, without ahgnge in velocity at the wall, causes the velogigdients to rise.

CONCLUSION

This paper analyzes the effect of different sliwdaon the heat transfer and entropy generationackeristics of
viscoelastic fluids. The viscoelastic behavior wagdeled through the linear version of simplifiedaR#Thien-
Tanner (s-PTT) model. Three different slip lawgluding Navier's non-linear slip law, Hatzikiriaka$ip law and
asymptotic slip law, were used to capture the afighe wall. The flow was hydrodynamically and thaHy fully
developed. A uniform heat flux was imposed on thalsvand the effect of viscous dissipation was takeo
account, while axial conduction was ignored. Thevegning equations for mass, momentum and energy
conservation were solved analytically and exactresgions for velocity, stress, temperature, entrggyeration,
Bejan number and Nusselt number were obtainedfdllwsving conclusions can be drawn from this study.

1.For different values of slip, the velocity profiehanges but the velocity gradient remains the sarhas, a
change in slip coefficients for symmetrical slipillvalter only the advection of the fluid momentubyt not its
diffusion.

2.The shear thinning behavior of the fluid is enhahedth increase in the value of viscoelastic gra‘lJBe2 . This
effect is more pronounced near the wall where beasstress is higher.

3.An increase in slip coefficients/ slip velocity Wiad to an increase in the temperature of the thecause of an
improved heat transfer rate at the wall.

4.The Nusselt number has a complex dependence ovistteelastic groupEDeZ, the pressure gradient and the
slip coefficients. In general, an increase in thye coefficients will enhance the value Wi because of improved

heat transfer rate; an increase in the valugBfe® will also lead to an increase hu. But for higher values of
pressure gradient and slip velocity, an increase e’ will lead to lowerNu. This is attributed to the high flow

rate at high pressure gradient apDe® , which brings down the average temperature.

5.The entropy generation rate decreases with incrieaskp velocity because, thermodynamically, thietion at
the wall is a source of irreversibility. A high val of slip suggests that there is less frictiosistance to the flow at
the wall and thus less irreversibility.

6.The Bejan number of the flow was found to be clas# for all the cases considered. Thus a reseaghppling
with the problem of entropy generation minimizatifum viscoleastic fluids is advised to concentrhige efforts
more towards the irreversibility due to heat transf

7.Bejan number is lowest in the vicinity of the wiadlcause the velocity gradients are highest there.
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8.Between the Hatzikiriakos and the asymptotic shiyd, the slip velocity modeled by Hatzikiriakogpslaw is
higher. This leads to higher value of Nusselt nungral lower values of entropy generation rateHatzikiriakos
slip law.

In future, the author intends to explore similarepbmena for exponential formulation of s-PTT moitelan
upcoming paper. Moreover, the entropy generatialyais covered here can lay the groundwork for atrdpy
Generation Minimization (EGM) analysis [15] for faer research in viscoelastic fluids.
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