In this work, The CuO nanoparticles were characterized which developed a novel CuO nanoparticle-assisted matrix solid-phase dispersion (CuO-MSPD) method for extraction of doxycycline (DC) from environmental samples. Spectrophotometric determination was developed for isolation and pre-concentration of doxycycline form aquatic and CuO nanoparticles (NPs) was used as a sorbent. The unique properties of CuO NPs including high surface area was utilized effectively in the MSPE process. The effect of the different parameters such as pH, extraction time, effect of the salt, nanoparticle amount and extraction temperature have been studied. Under optimized condition, the method was successfully applied to the extraction of DC from aqueous samples and relative recovery amount of 87%, detection limit of 25μg L-1 and a relative standard deviation (RSD) of 2.3% were obtained. The method linear response was over a range of 10–50000μgL−1 with R2 = 0.9968. The relative recovery in aqueous matrices was investigated and values of 89% were obtained. The whole procedure showed to be conveniently fast and high extraction efficiency of DC from real samples.
Keywords: Doxycycline, spectrophotometry, nanoparticles, antibiotic;
D. Perret, A. Gentili, S. Marchese, A. Greco, R. Curini, Chromatographia, 2006; 63, 225.
A.A.M. Stolker, W. Niesing, E.A. Hogendoorn, J.F.M. Versteegh, R. Fuchs, U.A.T. Brinkman, Anal. Bioanal.
Chem. 2004; 378, 955.
Z. Ye, H.S. Weinberg, M.T. Meyer, Anal. Chem. 2007; 79, 1135.
C.S. McArdell, E. Molnar, M.J.F. Suter, W. Giger, Environ. Sci. Technol. 2003; 37, 5479.
S.B. Levy, the Antibiotic Paradox (Perseus Publishing, Cambridge, MA, 2002.
L. Ji, W. Chen, J. Bi, S. Zheng, Z. Xu, D. Zhu, P.J. Alvarez, Environ. Toxicol. Chem. 2010; 29, 2713.
L. Ji, W. Chen, L. Duan, D. Zhu, Environ. Sci. Technol. 2009; 43, 2322.
P. Oleszczuk, B. Pan, B. Xing, Environ. Sci. Technol. 2009; 43, 9167.
W. Yang, F. Zheng, Y. Lu, X. Xue, N. Li, Ind. Eng.Chem. Res. 2011; 50, 13892.
R.A. Figueroa, A.A. MacKay, Environ. Sci. Technol. 2005; 39, 6664.
C. Gu, K.G. Karthikeyan, Environ. Sci. Technol. 2005; 39, 2660.
H. Liu, Y. Yang, J. Kang, M. Fan, J. Qu, J. Environ. Sci. 2012; 24, 242.
X.R. Xu, X.Y. Li, Chemosphere, 2010; 78, 430.
C. Gu, K.G. Karthikeyan, S.D. Sibley, J.A. Pedersen, Chemosphere, 2007; 66, 1494.
L. Aristilde, C. Marichal, J. Mi_eh_e-Brendl_e, B. Lanson, L. Charlet, Environ. Sci. Technol. 2010; 44, 7839.
X.B. Ji, C.E. Banks, W. Xi, S.J. Wilkins, R.G. Compton, J. Phys. Chem. B, 2006; 110, 2230.
X. Dai, G.G. Wildgoose, C., Salter, A., Crossley, R.G. Compton, Anal. Chem., 2006; 78, 6102.
H., Wang, C.W., Xu, F.L., Cheng, S.P. Jiang, Electrochem. Commun., 2007; 9, 1212.
C.H., Tu, A.Q., Wang, M.Y., Zheng, X.D. Wang, T. Zhang, Appl. Catal. A. Gen., 2006; 297, 40.
R.H., Lin, L., Fang, X.P., Li, Y.X., Xi, S.F., Zhang, S.F., Sun. Polym. J. 2006; 38. 178.
R.V., Kumar, Y., Diamant, A. Gedanken, Chem. Mater., 2000; 12, 2301.
R.V., R., Elgamiel, Kumar, Y., Diamant, A., Gedanken, J. Norwig, Langmuir, 2000; 17, 1406.
A.A., Eliseev, A.V., Lukashin, A.A., Vertegel, L.I., Heifets, A.I., Zhirov, Y.D. Tretyakov, Mater. Res. Innovations, 2000; 3, 308.
J.F., Xu, W., Ji, Z.X., Shen, S.H., Tang, X.R., Ye, D.Z., Jia, and X.Q. Xin, J. Solid State Chem., 1999; 147. 516.
K., Borgohain, J.B., Singh, M.V., Rama Rao, T., Shripathi, S. Mahamuni, Phys. Rev. B, 2000; 61, 1109.
M.J. Siegfried, K.S. Choi, Adv. Mater., 2004; 16, 1743.
A. El-Trass, H. Elshamy, I. El-Mehasseb, M. El-Kemary, Appl. Surf. Sci. 2012; 258, 2997.
M. Gopiraman, S. Ganesh Babu, Z. Khatri, W. Kai, Y. A. Kim, M. Endo, R. Karvembu, I. S. Kim, I. S. Carbon, 2013; 62, 135.
J. Xiong, B. Hu, J. Chromatogr. A. 2008; 7, 1193.
http://www.etd.lsu.edu.