In this work, using quantum mechanics, the interaction of drug 2-methoxyestradiol with γ-Fe2O3 nanoparticles have been studied. Fe2O3 nanoparticles were modeled using Fe6(OH)18(H2O)6 ring clusters. 2-methoxyestradiol molecule can coordinate to the γ-Fe2O3 nanoparticles via its own OH groups. All of the calculations have been performed using a hybrid density functional method (B3LYP) in solution phase. Two possible modes of noncovalent interaction of 2-methoxyestradiol onto γ-Fe2O3nanoparticles were investigated. Quantum molecular descriptors in the drugnanoparticle systems were studied. It was found that binding of 2-methoxyestradiol with γ-Fe2O3nanoparticles is thermodynamically favorable. Therefore, γ-Fe2O3nanoparticlescanact as a suitable system for drug 2- methoxyestradiol delivery within biological systems.
Key words:2-methoxyestradiol, γ-Fe2O3nanoparticles, DFT, Drug delivery, Quantum molecular descriptors
X. Guo, Y. Xing, Q. Mei, H. Zhang, Z. Zhang, F. Cui, Anti-cancer drugs, 2012; 23, 185-190.
B. Du, Z. Zhao, H. Sun, S. Ma, J. Jin, Z. Zhang, Cell Biochem. Funct., 2012;30, 158-165.
B. Du, S.-y. Wang, X.-f. Shi, C.-f. Zhang, Z.-z. Zhang, Tumori, 2011; 97, 660.
N. Klauber, S. Parangi, E. Flynn, E. Hamel, R.J. D'Amato, Cancer research, 1997;57, 81-86.
N.J. Lakhani, M.A. Sarkar, J. Venitz, W.D. Figg, Pharmacotherapy: The Journal of Human Pharmacology and
Drug Therapy,2003;23, 165-172.
H. Sharma, K. Kumar, C. Choudhary, P.K. Mishra, B. Vaidya, Artificial cells, nanomedicine, and biotechnology, 2014; 1-8.
F. Hosseini, M. Seyedsadjadi, N. Farhadyar, Oriental Journal of Chemistry, 2014; 30.
O. Veiseh, J.W. Gunn, M. Zhang, Advanced drug delivery reviews, 2010; 62, 284-304.
M.M. Yallapu, S.F. Othman, E.T. Curtis, B.K. Gupta, M. Jaggi, S.C. Chauhan, Biomaterials, 2011; 32, 1890-1905.
L. Jayarathne, W. Ng, A. Bandara, M. Vitanage, C. Dissanayake, R. Weerasooriya, Colloids and surfaces, 2012.
A.D. Becke, The Journal of Chemical Physics,1993; 98, 5648-5652.
A.D. Becke, Phys. Rev. A, 1988;38, 3098.
C. Lee, W. Yang, R.G. Parr, Physical Review B, 1988;37, 785.
M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, Wallingford, CT, 2009.
A. Akbari, F. Hoseinzade, A. Morsali, S. Ali Beyramabadi, Inorg. Chim. Acta, 2013; 394, 423-429.
A. Morsali, F. Hoseinzade, A. Akbari, S.A. Beyramabadi, R. Ghiasi, J. Solution Chem., 2013;42, 1902-1911.
A.H.J. Magham, A. Morsali, S. Beyramabadi, H. Chegini, Progress in Reaction Kinetics and Mechanism, 2015; 40.
A. Gharib, A. Morsali, S. Beyramabadi, H. Chegini, M.N. Ardabili, Progress in Reaction Kinetics and Mechanism,2014;39, 354-364.
M.N. Ardabili, A. Morsali, S.A. Beyramabadi, H. Chegini, A. Gharib, Res. Chem. Intermed.,1-10.
J. Tomasi, M. Persico, Chem. Rev.1994;94, 2027-2094.
R.G. Parr, L.v. Szentpaly, S. Liu, J. Am. Chem. Soc., 1999; 121, 1922-1924.