Erythromycin (ERY) is a macrolide antibiotic that has similar antimicrobial spectrum to penicillin and it is many used, particular in the treatment of patients who are allergic to penicillin. A simple, efficient and low-cost method based on matrix solid-phase dispersion (MSPD) microextraction was developed for the determination of erythromycin in environmental samples. In this work, Fe3O4 nanoparticles were adsorbents and spectrophotometric methods have been developed and validated for the isolation and pre-concentration of erythromycin form aquatic. The experimental conditions for the extraction, including Fe3O4 nanoparticle dosage, amount of the salt, the extraction time, and pH were investigated and optimized. Under the optimized conditions, a linear range of 10 -50000μgL−1 with R2 = 0.9551 and detection limit of 17 μg L-1 were obtained for target analyte. The method was successfully used for the extraction of ERY from aqueous samples with relative recoveries amount of 94.8 (RSDs =4.4). These results corroborate that this method is low cost, conveniently fast and prepare reliable results in order to be used in detection of erythromycin from aqueous samples.
Keywords: Erythromycin, spectrophotometry, nanoparticles, antibiotic
K. Griessmann, A. Kaunzinger, M. Schubert-Zsilavecz, M. Abdel-Tawab. Pharm. Sci. 2007; 62: 668.
R. Rattana poltaveechai, W. Vongkom, W. Suntornsuk, L. Suntornsuk. Food Drug Anal. 2007; 15.
M. Ali, S. Sherazi, S. Mahesar. Arab. J Chem. 2004; 7: 1104.
W. Zheng, K. Chen, J. Zhu, L. Ji. Sep. Purif. Technol. 2013; 116: 398.
K. Tsuji, M.P. Kane. Pharm.Sci. 1982; 71: 1160.
B. Liawruangrath, S. Liawruangrath. Chromatographia, 2001; 54: 405.
J. Wardrop, D. Ficker, S. Franklin, R.J. Gorski. Pharm. Sci. 2000; 89: 1097.
N. Gunes, R. Cibik, M.E. Gunes,L. Aydin. Food Addit. Contam. 2008; 25: 1313.
S.T. Hassib, A.E. Farag, E.F. Elkady. Bull. Fac. Pharm. CairoUniv. 2011; 49: 81.
T. Cachet, M. Delrue, J. Paesen, R. Busson, E. Roets, J. Hoogmartens. Pharm. Biomed. Anal. 1992; 10: 851.
R. Granja, A.M. Nio, R. Zucchetti, R.M. Nio, R. Patel, A.G. Salerno. AOACInt. 2009; 92: 975.
C. Benetti, R. Piro, G. Binato, R. Angeletti, G. Biancotto. Food Addit. Contam. 2006; 23: 1099.
J. Wang, D. Leung. RapidCommun. MassSpectrom. 2007; 21: 3213.
Y.-X. Li, K. Neufeld, J. Chastain, A. Curtis, P. Velagaleti. Pharm. Biomed. Anal. 1998; 16: 961.
A. Lalloo, I. Kanfer. Chromatogr. B:Biomed. Sci. Appl. 1997; 704: 343.
P.T.T. Ha, A. Van Schepdael, E. Roets, J. Hoogmartens. Pharm. Biomed. Anal. 2004; 34: 861–870.
Y.-C. Feng, C.-Q. Hu. Pharm. Biomed. Anal. 2006; 41: 373.
J. Tepe, C. JohnSt. Anal. Chem. 1955; 27: 744.
X. Hu, P. Wang, J. Yang, B. Zhang, J. Li, J. Luo, K. Wu. Colloids Surf. B:Biointerfaces, 2010; 81: 27.
M.A. Ivić, S. Petrović, D. Mijin, F. Vanmoos, D. Orlović, D. Marjanović, V. Radović. Electrochim. Acta. 2008; 54: 649.
W. Lian, S. Liu, J. Yu, X. Xing, J. Li, M. Cui, J. Huang. Biosens.Bioe- lectron. 2012; 38: 163.
A. Khodabakhshi, M.M. Amin, M. Mozaffari. Iran. J. Environ. Health. Sci. Eng. 2011; 8: 189.
J. Qu, J. Environ. Sci. 2008; 20: 1.
M. Ghaemi, G. Absalan. Microchim. Acta. 2014; 181: 45.
A. Afkhami, R. Moosavi, J. Hazard. Mater. 2010; 174: 398.
S. Qadri, A. Ganoe, Y. Haik, J. Hazard. Mater. 2009; 169: 318.
S. Pirillo, M. Ferreira, E.H. Rueda, Ind. Eng. Chem. Res. 2007; 46: 8255
B. A. Bolto. Waste Management. 1990; 10: 11.
A. B. Fuertes and P. Tartaj. Chem. Mater. 2008; 18: 1675.
T. Yang, S. H. Zhu, D. Zhang, and S. H. Xu. Mater. Lett. 2008; 62: 645.
S. Liong. Georgia Institut of Technology, North Ave, Atlanta, Georgia. 2005; 213.
M. Senthil and C. Ramesh. Nanomaterials and Biostructures. 2012; 7: 1655.
Cornell RM, Schwertmann U. The Iron Oxide: Structure, Properties, Reactions, Occurrence and Uses. 1996.
S. Pal. Tetrahedron, 2006; 62: 3171.
E.F. Fiese, S.H. Steffen. Antimicrobial Chemotherapy, 1990; 25: 39.
D.A. Volmer, J.P.M. Hui. Rapid communications in mass spectrometry, 1998; 12: 123.
A.Mohammadi , Y.Yamini ,N. Alizadeh. Chromatogr, 2005; A: 1063
http://www.etd.lsu.edu