The present study deals with the effect of slip on the heat transfer and entropy generation characteristics of viscoelastic fluids in a channel. The slip has been modeled using three different slip laws namely, Navier’s nonlinear slip law, Hatzikiriakos slip law and asymptotic slip law. The viscoelastic nature of the fluid is captured using the linear version of simplified Phan-Thien-Tanner (s-PTT) model. The flow is assumed to be hydrodynamically and thermally fully developed with uniform heat flux boundary condition at the wall. Viscous dissipation is included while axial conduction is ignored. The governing equations have been solved analytically and the reasons behind the observed trends have been explained in detail. Specifically, Nusselt number shows a complex dependence on the viscoelastic group, slip coefficients and the pressure gradient. Finally, a comparison between Hatzikiriakos slip law and the asymptotic slip law shows that the slip velocity and consequently the Nusselt number is higher for Hatzkiriakos version of slip law
Keywords: Phan-Thien-Tanner; entropy generation; convective heat transfer; slip laws; non-linear Navier; Hatzikiriakos
S.H. Hashembadi, S.Gh. Etemad, J. Thibault, Int. J. Heat Mass Transfer, 2004; 47: 3985-3991.
N. Phan-Thien, R.I. Tanner J. Non-Newtonian FluidMech. 1977; 2: 353–365.
N. Phan-Thien, J. Rheol. 1978; 22: 259–283.
M.M. Denn, Ann. Rev. Fluid Mech. 2001; 33: 265–287.
J. Azaiez, R. Guénette, A. Aitkadi, J. Non-Newton. Fluid Mech. 1996; 62: 253–277.
E.A. Carew, P. Townsend, M.F. Webster, J. Non-Newton. Fluid Mech. 1993; 50: 253–287.
M.A. Alves, F.T. Pinho, P.J. Oliveira, J. Non-Newton. Fluid Mech. 2001; 101: 55–76.
P.J. Oliveira, F.T. Pinho, J. Fluid Mech. 1999; 387: 271–280.
A. Raisi, M. Mirzazadeh, A.S. Dehnavi, F. Rashidi, Rheol. Acta. 2007; 47: 75–80.
L.L. Ferrás , A.M. Afonso , M.A. Alves , J.M. Nóbrega , F.T. Pinho , J. Non-Newton. Fluid Mech. 2014; 212: 80–91.
Luis L. Ferrás , João M. Nóbrega, Fernando T. Pinho , J. Non-Newton. Fluid Mech. 2012; 171: 97–105.
F.T. Pinho, P.J. Oliveria, Int. J. Heat Mass Transfer, 2000; 43: 2273–2287.
P. M. Coelho, F. T. Pinho, P.J. Oliveira, Int. J. Heat Mass Transfer, 2002; 45: 1413–1423.
P. M. Coelho, F. T. Pinho, P.J. Oliveira, Int. J. Heat Mass Transfer, 2003; 46: 3865–3880.
Bejan A., New York, CRC Press, 1996.
Lauga E, Brenner MP, Stone HA. 2007, p. 1219-1240.
C.L.M.H. Navier, Mem. Acad.Roy. Sci. Inst. Fr. 1827; 6: 389–440.
J.C. Maxwell, Phil. Trans. R. Soc. Lond. 1879; 170: 231–256.
P.A. Thompson, S.M. Troian Nature, 1997; 389: 360–362.
S. Goldstein, vol. 1, Turbulent Motion and Wakes, New York, Dover, 1965.
W.R. Schowalter, J. Non-Newtonian Fluid Mech. 1988; 29: 25–36.
S.G. Hatzikiriakos, Intern. Polym. Process. 1993; 8: 135–142.
ANSYS polyflow manual (implementation of boundary conditions). ANSYS; 2011.
R.I. Tanner, Clarendon Press, Oxford, 1985.
K Hooman.. Int Commun Heat Mass Transf. 2007; 34: 945-57.
S Paoletti , F Rispoli , E Sciubba . Calculation of exergetic losses in compact heat exchanger passages. ASME AES- 10 1989, 21-29.
V Anand. Exergy, 2014; 76: 716-732.
M Shojaeian , A Kosar. Int. J. Heat Mass Transfer, 2014; 70: 664-673.
LL Ferras , JM Nobrega , FT Pinho. J. Non-Newtonian Fluid Mech. 2012; 175-176, 76-88.